Disentangled Person Image Generation

Paper ID: 1801 Project page: <u>https://homes.esat.kuleuven.be/~liqianma/CVPR18_DPIG/</u>

Liqian¹ Qianru² Stamatios¹ Luc^{1,3} Bernt² Mario² ¹KU Leuven ²MPI for Informatics ³ETH Zürich

- Motivation: Learn image generation model for persons that explicitly represents foreground, background, and pose.
- **Task:** Synthesize person images, while independently controlling foreground, background, and pose, in a *self-supervised* way.
- Key idea: *Disentangle* person images into the aforementioned components, and then combine.

Related work

Day → Night

Zebras $\leftarrow \rightarrow$ Horses

 $zebra \rightarrow horse$

horse \rightarrow zebra

Pix2Pix [1]

CycleGAN [2]

[1] P. Isola et al. Image-to-Image Translation with Conditional Adversarial Networks. In CVPR, 2017.

[2] J.-Y. Zhu et al. Unpaired imageto-image translation using cycle-consistent adversarial networks. In ICCV, 2017

[3] L. Ma et al. Pose guided person image generation. In NIPS, 2017.

Framework

Framework Stage-I

-- Disentangled Person Image Generation

Stage-I: Reconstruction pipeline. Three disentangled branches: foreground (FG), background (BG) and pose.

Framework Stage-I

Stage-I: Reconstruction pipeline. Three encoder branches for foreground (FG), background (BG) and pose.

Framework Stage-I

Stage-I: Fuse three factors. Tile the appearance feature vector and then concatenate it with pose keypoints to encourage the Decoder to select appearance info. with pose keypoints.

Sampling phase (testing)

Sampling phase: Sample foreground, background and pose from Gaussian noise to compose new person images.

Experiments – sampling

-- Disentangled Person Image Generation

1) FG sampling (fixed BG and Pose)

3) Pose sampling (fixed FG and BG)

2) BG sampling (fixed FG and Pose)

4) FG, BG and Pose sampling

Market-1501: Sampling different factors

DeepFashion: Appearance and Pose sampling

Experiments – sampling

VAE

Ours - Whole Body

Ours – BodyROI7

Ours - BodyROI7 with real pose

Real data

Sampling results comparison. Our method can result in more realistic natural person images

Experiments – interpolation

Same person

Same person

Experiments – person re-ID

Our generated Virtual Market (VM) dataset

Model	Training data	Rank-1	mAP
Res50 [1]	CUHK03 (labeled)	0.300	0.115
Res50 [1]	Duke (labeled)	0.361	0.142
Res50	VM	0.338	0.134
Res50+PUL	VM+Market	0.369	0.156
Res50+PUL+KISSME	VM+Market	0.375	0.154

Our generated data can benefit unsupervised re-ID

[1] H. Fan *et al*. Unsupervised Person Re-identification: Clustering and Fine-tuning. In Arxiv, 2017.

Experiments – human pose transfer

-- Disentangled Person Image Generation

Model	DeepFashion		Market-1501			
	SSIM	IS	SSIM	IS	Mask-SSIM	Mask-IS
PG2[1]	0.762	3.090	0.253	3.460	0.792	3.435
Ours	0.614	3.228	0.099	3.483	0.614	3.491

[1] L. Ma et al. Pose guided person image generation. In NIPS, 2017.

Experiments – video generation

-- Disentangled Person Image Generation

Person B's pose

Result

Person B

Person A's pose

Result

Thank you !