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Depth Motion Detection—A Novel RS-Trigger
Temporal Logic based Method

Can Wang, Student Member, IEEE, Hong Liu, Member, IEEE, and Ligian Ma

Abstract—Recently, depth data is widely used in computer vi-
sion applications such as detection and tracking, which shows great
promises in complicated environments due to its complementary
natures to RGB data. However, previous works mostly use depth as
an auxiliary cue of RGB data and overlook its inherent advantage
on motion detection. Intrinsically different from RGB data, points
in depth map essentially represents 3-D positions in the world, so
depth video represents the variation of these “positions,” which is
motion. Motivated by this, we proposed a novel motion detection
scheme based on RS-Trigger temporal logic which best fits nature
of depth data on motion detection. The proposed algorithm can fast
detect motion regions in the scene without statistics of background
and prior knowledge of objects to detect. In following refinement
modules, a depth-invariant density-constant projection is proposed
which contributes to a fast spatial clustering and accurate segmen-
tation, for it transforms dense 3-D points cloud to depth-invariant
2-D map with density-constance, not only it overcomes depth-de-
pendent sampling of depth sensor, but also overcomes the common
‘scale problem’ in 2-D image analysis, which makes it easy to set
system parameters to de-noise and pop-out motion regions. Exper-
imental results validate its effectiveness and efficiency.

Index Terms—Depth data, motion detection.

I. INTRODUCTION

OMBINING RGB and depth data for computer vision
C applications becomes more and more popular especially
after Microsoft Kinect sensor is widely used [1]-[6]. However,
due to so many sophisticated methods for RGB data exists, in
these applications, depth data only plays an auxiliary role to
RGB data, which is also because existing depth sensors are not
reliable enough, due to low resolution or extensive unstable re-
gions and holes in depth videos.
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When it comes to motion detection and objects segmentation,
some researchers combine both depth data and intensity data to-
gether for detection [7]-[12], but it brings relatively higher com-
puting resource consumption, and require range sensors can ob-
tain both depth and intensity data simultaneously, which is im-
possible for some kinds of sensors, such as TOF sensors [13] and
previous structure-light sensors without calibrated RGB sensor.
Therefore, only using depth data can expand the method’s ap-
plied scope and can reduce the manufacturing cost. From an-
other angle, if detection methods only using depth can achieve
good performance, this undoubtedly will be a firm foundation
for methods combining more RGB cues and will be competent
in higher level applications.

There are indeed some previous works which only use depth
data for motion detection [14]-[17], foreground segmentation
[4][13] or multiple objects tracking [18]. Work in [4] adopted
temporal difference scheme to obtain salient 3-D motion points
and perform 3-D clusterings for refinement. But temporal dif-
ference scheme will introduce background noise and can hardly
get whole motion regions. Motion history image (MHI) method
is used in both motion detection module of work [14] and [15].
However, MHI is actually an accumulation of temporal differ-
ence and is simply inherited from traditional intensity-based
method [19]. Depth data is adopted in work [13] for objects
segmentation which is a strong cue to separate foreground from
background and another work [18] also try to use depth data to
separate different objects in the scene according to their depth
layers. However, this is not a generative way for objects seg-
mentation which are only suitable for ideal cases that objects’
depth layers are separable.

In this work, we focus on designing a novel motion detection
framework which is suitable for depth videos and can fully ex-
ploit potential of depth data on motion description. Unlike pre-
vious works obtaining motion regions via threshold-based ab-
solute-difference scheme (background subtraction and temporal
difference), our main contributions consist of proposing a novel
pixel-level temporal logic scheme for motion detection specifi-
cally designed for depth data, and a coarse-to-fine scheme which
fully utilizes depth information achieving depth-invariance for
accurate localization and segmentation, which overcomes hard-
ware drawbacks of depth sensors, such as holes and unstable
regions [20] in depth videos. Details of the proposed method
are elaborated in following sections.

II. PIXEL-LEVEL RS-TRIGGER BASED MOTION DETECTION

In digital electronics, RS-Trigger (RST) is a temporal logic
with two stable states, as shown in Fig. 1(a). The states switch
between 0 and 1 according to the input signals R and 5. This is
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Fig. 1. (a) The logic graph of RS-Trigger. (b) A typical example of how pixels’
states change when an object move from time ¢, to time ¢.

quite similar to the motion detection problem which also has two
states for each pixel: on a moving object or not. Based on this
intuition, a pixel-level motion detection approach only using
depth data is proposed:

First, given a depth frame D(t) at time ¢, let each pixel p;
with coordinates (u;, v;) be denoted as a 4-tuple:

pi(t) = {u,, vi,di(t), 8:(8)} (D

where d;(t) is the depth value of p; at time ¢ and s,(¢) is the
binary variable indicating the current state of p;, whether on
moving objects (s;(t) = 1) or not (s;(¢) = 0), corresponding
to two stable states 0 and 1 of RST.

Then, given consecutive depth frames D(# — 1) and D(#),
for each point p;, two variables 7, and [J,.,, corresponding to
two control signals S and R of RST are defined as:

Pm(t) _ { (1) if di(t) — di(t — 1) > Tz'(t)

g, otherwise
Lif di(t) — di(t — 1) < —7i(8)

T (1) = {0 otherwise @

where the subscript ‘pm’ and “nrn’ indicate ‘positive motion’
and ‘negative motion’ respectively, which represent significant
motion on the pixel-level. The term ‘positive motion’ can be in-
tuitively interpreted as the point skips closer to the sensor and
‘negative motion’ the point skips far away from the sensor. Here
7;(t) is an adaptive threshold indicating whether there is signif-
icant motion on pixel p; at time ¢, formulated as:

7i(t) = min(Tpm, o - (dimas — di(t — 1))) 3)
where dj,q. 1s the maximum pixel value on depth map being
used (here is 255), 7y, is set to limit the maximum threshold
and «y is a scaling factor. This adaptive threshold can suppress
commonly hopping in far distance away from depth sensor due
to hardware drawbacks, and also can increase sensitivity of mo-
tion detection in short distance.

Third, the state of each pixel s;(¢) is updated by variables
Tpm and J,,, following the RST temporal logic in Algorithm
1. Any pixel with state 1 is regarded as a point on moving ob-
jects. Fig. 1(b) shows how pixel states change when an object
moving in the scene according to RST scheme. Thus, points set
on moving objects at each frame ¢ can be given as:

M(t) = {pi(D)]si(t) = 1, pi(t) € D)} 4)

Fig. 2 gives the visualization of M (¢) in temporal sequence. It
can be seen that the RST temporal logic based motion detection
is a cumulative process and points on objects are gradually de-
tected while they are moving in the scene.
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Fig. 2. The temporal accumulation of the RST motion detection procedure.

Algorithm 1 RS-Trigger temporal logic for updating s;(¢)

Input: p; = {pi(l)'/p’i(Q)’ e 7pi(T)}
Output: s; = {s;(1), 5,(2),---,5(T)};

1: initial s;(0) to 0;

2: fort=1toT do

3: if 7,,,(t) = 1 then

4: s:(t) = 1;

5: else if 7! () = 1 then
6: s:(t) = 0;

T: else

8: s:(t) = s;(t = 1)

9: end if

10:  end for

III. MOTION SEGMENTATION REFINEMENT

The RST motion detection scheme can obtain a set of points
cloud M(%) in each depth frame. However, motion segmenta-
tion in point clouds is harder than in color images alone due to ir-
regular sampling and the high noise levels of depth sensors [21].
Moreover, because of ubiquitous unstable regions and holes in
the depth video [14][20], the pixel-level motion detection ap-
proach is inevitably affected, so the obtained coarse motion de-
tection M(?) needs refinement.

A. Frequent-Hopping Filtering

First, a frequent-hopping filtering (FHF) approach is pro-
posed to remove the adverse effects of unstable regions:

N = {m(t)i 2 (5 ()] + 175 (1) > T_f}

k=T-Ty
(5)

where vy is used to control the threshold of frequency. Then,
the refined motion points set can be given as:

M(t) = M(t) - N (t) (6)

The FHF actually acts as a de-noise process based on the obser-
vation that unstable regions and holes in depth videos exhibits
frequent hopping, but real motion points do not have such fea-
ture for real moving objects seldom disappear and appear fre-
quently and constantly at the same point.

B. Depth-Invariant Density-Constant Projection

Pixel-level motion detection scheme intrinsically suffers
from the lack of spatial constraints, especially for depth video
where have amount of noise points and separated regions in the
coarse detection results. To handle this, previous works usually
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Fig. 3. A brief illustration of the proposed method, where (d) is specifically given for comparison with (c).

adopt noise filtering and morphology processing techniques on
the 2-D grayscale map of coarse detection. But for 3-D point
clouds, noise filtering and morphology processing on three-di-
mensional space is relatively computation-consuming. On the
other side, if depth map is simply treated as 2-D grayscale map
and processed using classic 2-D techniques, there is no doubt
that depth information is lost.

In order to handle this dilemma, we proposed a depth-in-
variant density-constant projection (DIDCP) method, which
transforms the original 3-D coordinates of points cloud to
new 2-D image coordinates which have stable length metric
proportional to the absolute length metric of the real world. The
pixel value of the projection map is the density of projection on
that point. The DIDCP is formulated as follows:

Given a point in original 3-D coordinates p; = (u;,v;,d;)
and a its corresponding point p; = (uf, d};,w’) in the new co-
ordinate, the DIDCP projection can be denoted as:

P:M—=W= {pigp'j} 7
where M is the 3-D motion points set in Eq. (6) and W is the
projection map.

Depth-invariant indicates that length (measured in pixels) of
the new 2-D coordinates corresponds to constant length (mea-
sured in meters) in the real world. Given any 3-D point p;, the
2-D coordinates (u;, d’;) of p’; on the projection map V' can be
given as:

U; — Ug

'U/_I] = Yy * T . d,j

where «,, and « are both scale factors, and f, and ug are in-
trinsic parameters of the RGB-D sensor. This projection means
a lot, for example, on 2-D map projection of noise regions closer
to the sensor are larger than motion regions farther from the
sensor due to the ‘scale problem’. But with depth-invariance,
the ‘scale problem’ is overcome and system parameters are no
longer scene-dependent compared to 2-D computer vision.

Density-constant indicates that projection density is only re-
lated to real volume of the projected object in the world, but no
longer depends on sampling density of the sensor. Let the binary
variable lp (p;, p);) denote whether p; is projected to p/; through
the projection P, and given

(€))

. , , L , .
then, the pixel value w’; of p’; on projection map ¥ can be given
as:

Ip(pi,p;) =1 if Piﬂpg

wi=di Yy lp(pi,p)) (10)

where w’ denotes the projection density on the point p;. Depth

value d; here is to make sure the projection density is also depth-

Fig. 4. Dataset samples and corresponding ground truth.

invariant (constant). This operation is necessary because the
density of points cloud captured by depth sensor varies a lot in
different distance. Previous work in [22] also tries to get con-
stant density of 3-D points cloud before the detection, which
down-samples the original points cloud with real length 0.06 m,
so points density no longer depends on their distances from the
sensor. In this framework, the density-constance is achieved im-
plicitly with DIDCP projection but more fast.

C. Localization and Segmentation

In the last module, based on the projection map W, motion
objects segmentation are achieved by following steps: First an
isotropic Gaussian spatial filter is used to smooth the projection
map W (Fig. 3(b)), to combine more spatial constraints, which
is necessary to the pixel-level detection scheme. Secondly, a
peaks detection operation is done to detect all salient peaks on
map W. Around each peak, an rectangle area by is obtained
according to connectivity on the map W. For example, as shown
in Fig. 3(b) and (e), four rectangle areas around four peaks are
obtained. Thirdly, 3-D points cloud projected to each rectangle
by, are segmented from original depth map D (%), formulated as:

(11)

The final motion segmentation is the set of { f } corresponding
to peaks areas {b }. An example of final segmentation result is
shown in Fig. 3(c) corresponding to four rectangles in Fig. 3(b).
At last, refined segmentation F is used to update coarse detec-
tion map (M(t) = F) periodically, which provides accurate
base for the following cumulative RST detection, as well as in-
hibits accumulation of noise regions on M alone time (as shown
in Fig. 3(a) and (c)).

fk’ = {pL|p; € bk?pi € D(t)vlp(pz,p;) = 1}

IV. EXPERIMENTS AND DISCUSSIONS

A. Evaluation

The experimental comparison is little bit harder for this
work because few previous works focus on designing a specific
motion detection method for depth data. As mentioned in
the Section I, several related works do use RGB-D or depth
data for motion detection, but are intrinsically different from
motivation of this work. When it refers to evaluation metric,
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Fig. 5. Qualitative comparison of DIDCP and non-DIDCP (a) Ori. (b) DIDCP
(c) non-DIDCP.

TABLE I
AVERAGE ACCURACY IN ALL DEPTH VIDEOS RECORDED IN FOUR SCENES IN
OUR DATASETS ACCORDING TO THE £y METRIC IN EQ. (12)

F; metric in several datasets

Methods Scene I  Scene 2 Scene 3 Scene 4

FHF + DIDCP 0.930 0.901 0.880 0.895
non-FHF + DIDCP 0.892 0.884 0.867 0.883
FHF + non-DIDCP 0.864 0.765 0.796 0.802
non-FHF + non-DIDCP 0.821 0.787 0.702 0.835
MOG [23] 0.720 0.502 0.462 0.486
CBI1D [24] 0.782 0.523 0.507 0.563

FD + 3D Clustering [4] 0.624 0.650 0.623 0.583

previous motion detection evaluation prefers to use qualitative
evaluation. In this paper a quantitative metric is designed:
ground truth here is obtained by manually setting motion area
in the scene, thus all 3-D points cloud inside the motion area
are segmented without introducing background noise. Given
ground truth G and final motion segmentation F, we adopt the
widely used metric £} which combines precision and recall
to evaluate the quality of the segmentation. The F; measure is
defined as follows:

precision - recall

F =2 (12)

precision + recall

B. Datasets and Settings

Experiments have been conducted on 20 depth videos cap-
tured by the Kinect sensor in 4 different scenes. The moving
objects may move slow, fast or keep static occasionally, and
may change speed suddenly. There is also much diversity in
scenes like cluttered background, illumination changes, semi-
occluded and full-occluded cases. Datasets are recorded by Mi-
crosoft Kinect sensor. In all experiments, system parameters are
set as follows: 7, = 20, &g = 0.15 in Eq. (3), ay = 5 in
Eq. (5), oty = 0.25, ag = 0.5 in Eq. (8). Pixel value of depth
map is quantified to 0 — 255 and points closer to sensor have
bigger pixel value, and d,,, = 255 in Eq. (3).

C. Comparison and Discussion

As there are few counterparts for comparison, in order to eval-
uate the performance of the proposed method, we organized the
experimental comparison in two aspects:

On one hand, we emphasis on self-comparison by evaluating
the performance of several modules in the framework. The RST
motion detection results, with or without the following refine-
ment modules (FHF and DIDCP modules) are all evaluated.
The qualitative and quantitative results are given in Fig. 5 and
Table I respectively. It can be seen from row 1-4 in Table I that
FHF noise filtering module contributes to the accuracy in both
DIDCP and non-DIDCP settings, and contributes more with
non-DIDCP setting (row 3-4). This is because frequent-hop-
ping regions in depth video brings amount of noise detection,
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but with DIDCP refinement, these noise can be partially re-
moved. In order to give more intuitive observation of advan-
tages using DIDCP, the qualitative comparision of DIDCP and
non-DIDCP are given in Fig. 5. It can be observed that through
DIDCP, both size and density of the projections got depth-in-
variance. In practice, without depth-invariance and density-con-
stance, objects far away from the sensor usually are treated as
background noise due to small size and low density on projec-
tion map (as the missing detection in Fig. 5(c)). On the contrary,
noise regions near the sensor can be treated as moving objects.
So without DIDCP, it is hard to choose suitable parameters to
separate noise and true detection. But in our framework, all pa-
rameters can be set to fixed values in all scenes owe to DIDCP.

On the other hand, we also compared the proposed method
with two classic motion detection schemes, background sub-
traction and frame difference. For background subtraction
(BS), two classic background modeling methods MOG [23]
and Codebook [24] are adopted for comparison here. However,
this kind of methods perform badly when there are frequent
walking and wondering in the scene because it is hard for this
kind of methods to model satisfactory background model. If the
scene is relatively simple and clean, like scene 1, they performs
better than in other scenes. This can be seen from Table I. For
frame difference (FD), the comparison comes from a similar
application [4] to ours which directly uses FD for depth motion
detection and performs 3-D points cloud clustering for refine-
ment. It can be seen from Fig. 6(c) that MOG performs bad
because of ‘ghosting problem’, and it is even server in indoor
scenes. In Fig. 6(d) it can be seen that method in [4] can hardly
get whole motion regions. It introduced many background
points to final detection, as FD scheme can only get motion
points, which could be on both background and foreground.
But RST scheme only gets points on moving objects if not
taking noise into account.

V. CONCLUSIONS

In this paper, we focus on finding a suitable motion detec-
tion scheme for depth data, without directly using classic in-
tensity-based detection scheme or simply treating depth data as
an auxiliary cue of RGB data. In general, the RST motion de-
tection scheme is quite simple and fast for depth data, and en-
joys good performance in various scenes. The fast processing
rate makes it the firm foundation for the follow-up applications,
and makes a realtime online system possible. Its limitation is
that it cannot be used on the mobile platform, therefore it is
more suitable for the indoor surveillance system, and current
widely used depth sensors are also suitable for indoor appli-
cations. The future works are focused on combining RGB and
depth data for more challenging tasks based on RST motion de-
tection, such as multi-tracking and re-identification, treating the
proposed framework as a fundamental work.
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