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Taking selfies is convenient.



However, the body poses in selfies are usually unnatural.







Unselfie: translates a selfie into a neutral-pose portrait.
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• Lack of paired selfie-portrait data.
• Multi-modal results with different target neutral poses.
• Dis-occlusion and seamless composition.
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data, which are used to self-supervise the inpainting and composition networks.
The procedure is otherwise the same at both training and inference time.

In the remainder of this subsection, we describe the details of our pose search
module. As shown in Fig. 5, we first align the input selfie pose Pin by putting
two selected shoulder points in the center of the image to obtain the source pose
Psrc. All neutral poses are also aligned in the same way. We calculate the pose
similarity in the frontal torso region excluding the head, since the later stages of
our pipeline keep the head region intact and only correct the body pose. The
DensePose representation P is an IUV map which contains three channels. The
P

I channel contains indices of body parts to which pixels belong, and the P
UV

channels contain the UV coordinates.
Based on P

I and P
UV , we propose a two-step search strategy to calculate pose

similarity. First, we search for suitable target poses based on global information
such as body shape and position. To determine the global similarity between two
poses, we use the following equation:

d
I(P1, P2) =

X

x2R1[R2

(P I
1 (x) 6= P

I
2 (x)), (1)

where R refers to the front torso regions of the body. We iterate over all pixels in
both torso regions and count the number of pixels that belong to different body
parts in the two poses. If there is large body part index mismatch in the torso
regions, the two poses are dissimilar at a global level.

Among the top-K pose candidates selected based on dI , we further improve
the ranking by leveraging local pose information given by the UV coordinates. In
particular, for pixels belonging to torso regions in both poses, we calculate the
sum of the distances of their UV coordinates:

d
UV (P1, P2) =

X

x2R1\R2

kPUV
1 (x)� P

UV
2 (x)k2. (2)

3.3 Coordinate-based Inpainting

Inspired by self-supervised image inpainting work [41,58] and human synthesis
work [14], we learn to reuse the visible body pixels to fill in the invisible body
parts. As illustrated in Fig. 6 left, we first use an Image-to-UV (I2UV) mapping
to translate pose Psrc and the color image Isrc from the image domain to the UV
domain. Defined in the UV domain, Csrc stores the associated {x, y} coordinates
of pixels in the original image space. Likewise in the UV domain, Tsrc contains
the RGB colors of the associated pixels in the original image Isrc: these are
looked up by using bilinear sampling via Tsrc = Isrc(Csrc).

After the I2UV mapping, we use an inpainting neural network G1 to inpaint the
coordinate-map Csrc. We concatenate Csrc and Tsrc as input to the network. The
network outputs the inpainted coordinate-map CG1 = G1(Csrc, Tsrc). We then
perform bilinear sampling to obtain the inpainted texture-map TG1 = Isrc(CG1).

Finally, we map CG1 and TG1 back to the image space with UV-to-Image
(UV2I) mapping using the bilinear sampling operations E = CG1(Ptgt), IG1 =
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[1] Grigorev, A., et al. Coordinate-based texture inpainting for pose-guided image generation. CVPR’19.
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Fig. 6: Left: coordinate-based inpainting stage. Right: composition stage.

TG1(Ptgt). To train G1, we use three loss functions, identity loss LG1
idt, reconstruc-

tion loss L
G1
1 and perceptual loss L

G1
P [61] as follows,

L
G1
idt =E

⇥
kCG1 � Csrck22Vsrc

⇤
, (3)

L
G1
1 =E

⇥
kTG1 � Ttgtk1Vtgt

⇤
, (4)

L
G1
P =E

⇥
k�(TG1)� �(Ttgt)k22Vtgt

⇤
, (5)

Vsrc and Vtgt are binary masks that select the non-empty regions in the coordinate
map Csrc and Ttgt, respectively. Ttgt is the ground truth texture mapped from
image domain to UV domain (Fig. 4 left), that is, Ttgt = I2UV (Itgt). The identity
loss encourages the existing coordinates to stay unchanged while the network
synthesizes coordinates elsewhere. The reconstruction loss and perceptual loss
are performed in the pixel space instead of the coordinate space and use the
ground truth image for supervision. The overall loss for G1 is

min
G1

L
G1 = L

G1
1 + �1L

G1
P + �2L

G1
idt, (6)

3.4 Composition

The advantage of doing inpainting in the coordinate space is that the network can
copy and paste original pixels to fill in missing regions based on body symmetry
and therefore the synthesized pixels tend to look sharp. However, in some cases,
a small number of visible pixels get copied into a much larger region resulting in
flat and unrealistic appearance. In addition, when arms are moved down, holes
will appear in the background due to dis-occlusion.

To address these problems, we use an all-in-one composition network to add
details and fix artifacts in the body region and fill in the gaps between the
body and the background by synthesizing a natural transition. As illustrated
in Fig. 6 right, we use a U-net architecture equipped with gated convolutional
layers [58] for G2. The U-net architecture helps preserve the high resolution
features through skip-connections. The gated convolutional layer improves the
inpainting result quality when dealing with holes of arbitrary shape. To keep the
body appearance more consistent, we also use deformable skip connections [50,14]
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[1] Grigorev, A., et al. Coordinate-based texture inpainting for pose-guided image generation. CVPR’19.
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Fig. 3: Synthesized (portrait, selfie) pairs in image space. Given a neutral-pose
portrait Itgt, we use DensePose to extract its pose Ptgt. We perform nearest
neighbour search to find the closest pose from the selfie pose database. The selfie
image Isrc is synthesized from pixels in Itgt by the correspondence between Ptgt

and Psrc. The displayed Itgt and Ptgt are cropped due to alignment (Sect. 3.2)

Ground truth portrait
texture-map Ttgt

Synthesized selfie
coordinate-map Csrc
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Fig. 4: Synthesized (portrait, selfie) pairs in UV space to train our coordinate-
based inpainting network.

apply a state-of-the-art matting technique [54] to extract the foreground humans
and paste them into random background images to increase the data diversity.

We collect 4614 selfie photos from the Internet using the following strategy.
We first search with keywords like “selfie girl,” “selfie boy,” etc. Many photos
returned by the search engines contain cellphones. These are not the selfies we
desire but are third-person view photos of someone taking selfies. Since Mask
R-CNN [16] is pretrained on the COCO dataset [27], which contains person and
cell phone classes, we use it to select photos that contain a single person without
any cell phones. We then eliminate photos that have disconnected body parts or
have any of the frontal upper body parts missing in the DensePose representation.
We also use this strategy to create the neutral-pose portrait dataset. Finally,
we manually clean up the remaining data in case any of the previous filters fail.
We create a 4114/500 split for training and testing. We denote the DensePose
representation of selfie photos as {P i

selfie}.
Synthesized paired training data. To allow self-supervised training, based
on the collected neural-pose portraits, we synthesize their corresponding selfie
data using DensePose. As shown in Fig. 3, given a neutral pose Ptgt, we first
search for a selfie pose Psrc from {P i

selfie} that matches the input neutral pose
the best in the upper torso region. Through DensePose correspondences, we
map the portrait image pixels to the nearest selfie pose (see Sect. 3.2 for more
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• Synthesized (portrait, selfie) pair in image space

• Synthesized (portrait, selfie) pair in UV space (Our choice)
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to propagate the appearance information from the source image Isrc to the
result despite large changes in poses. The network synthesizes missing foreground
pixels, fills in background holes and also produces an alpha mask AG2 . AG2

is used to blend the synthesized pixels IG2 into the background image Ibg, i.e.
Iout = IG2AG2 + Ibg(1�AG2). We add the original head and neck regions into
Ibg so that after blending the head regions will remain untouched.

To train G2, we apply reconstruction loss LG2
1 , perceptual loss LG2

P [61], alpha
loss L

G2
A and adversarial loss L

G2,D
adv ,

L
G2
1 = E

⇥
kIout � Itgtk1(1 +H)

⇤
, (7)

L
G2
P = E

⇥
k�(Iout)� �(Itgt)k22(1 +H)

⇤
, (8)

L
G2
A = E

⇥
kAG2 �Hk1

⇤
, (9)

min
G2

max
D

L
G2,D
adv = E

⇥
(D(Itgt))

2(1 +H)
⇤

+ E
⇥
(D(Iout)� 1)2(1 +H)

⇤
, (10)

where Itgt denotes the ground truth neutral-pose portrait. H 2 [0, 1] is a binary
spatial mask to encourage the network to focus more on synthesizing foreground
and filling dis-occluded holes and the details are explained later. When applied
to different spatial size, H will be resized to the corresponding spatial size by
nearest-neighbor scaling accordingly. As to the adversarial learning, we use the
same residual discriminator as that of [63]. The overall loss for G2 is

min
G2

max
D

L
G2 = �3L

G2
1 + �4L

G2
P + �5L

G2,D
adv + L

G2
A . (11)

There is a big domain gap between the training and testing data. During
testing, arms in real selfies are moved downward revealing a large hole in the
background. During training, we also mimic the dis-occluded background holes.
In particular, we calculate a binary mask H = Hselfie [Hneutral, which is also
used in Eq. 7 to 10. Hselfie and Hneutral, which are estimated using an off-the-
shelf DeepMatting model [54] and binarized with threshold 0.1, denote the body
regions from the selfie and the neutral-pose portrait, respectively. The synthesized
hole mask H is then applied to Ibg to mimic dis-occluded background holes.

4 Experiments

We compare our approach with several prior work through a qualitative evaluation,
a user study and a quantitative evaluation1. Note that none of the previous
approaches address exactly our unselfie problem, so we cannot compare our
approach with previous work using their datasets and result quality for previous
work on our dataset is worse than the result quality in those papers. We present
ablation studies to validate the effectiveness of different algorithm choices. Finally,
we discuss the limitations and future work. If not otherwise specified, we use
1 More results and implementation details are reported in the supplementary materials.
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background holes and near the foreground boundaries. For example, in the top
row of Fig. S1, the structure of the door on the right side of the image is better
synthesized. In the top and middle rows, the artifacts near the arms are also
reduced. Cons: occasionally the inpainting network could introduce small artifacts
near the foreground boundary. For example, in the bottom row, the inpainting
network introduced some grey regions on top of the girl’s right shoulder.

B More comparisons

In Fig. S2, we provide more comparisons between our approach and prior ap-
proaches, including VUNET [11]. Ours is the result from our original pipeline
where we manually picked the best one out of results using our top-5 retrieved
poses. Ours w/ inpainted BG uses off-the-shelf inpainting network as de-
scribed above. VUNET produces many artifacts in both body and background
regions.

Input selfie DPIG VUNET PATN Ours
Ours w/ in-
painted BG

Fig. S2: Comparisons with state-of-the-art methods.

C Multi-modal results

As mentioned in the main paper, our nearest pose search module can generate
multiple output variations based on the same input selfie. Fig. S3 provides top5
results for every input selfie. Most of the top5 results have consistent quality
with each other. This gives users the freedom to choose the best pose they prefer.
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FID/KID measures how realistic the generated image looks like.
Real domain: real selfies and neutral-pose portraits.
Fake domain: generated results.
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picked the best target pose out of results using our top-5 retrieved poses. The
multi-modal results are reported in the supplementary material. In the top row,
the short-sleeved clothing style is better preserved. In the second row, the stripe
pattern is better preserved, and the synthesized arms are sharper. In the bottom
two rows, our method synthesizes better clothing and background details and
produces more natural transitions between foreground and background. The
reasons that our method outperforms the baselines are: 1) unsupervised methods,
like DPIG, encode images into heavily compressed features, which results in loss
of details and texture inconsistency between the generated output and the input.
They perform well in more constrained settings (clean backgrounds and simple
texture), while our task involves complex images in the wild; 2) these baseline
methods are more sensitive to the domain gap between training and testing data
since they directly synthesize image pixels. Our method performs foreground
inpainting in the coordinate space and then uses a composition module to refine
details and fill in background holes and thus is less sensitive to the domain gap
between imperfect synthesized selfies at training and perfect selfies at testing.
User study. For a useful real-world application, we believe qualitative percep-
tual evaluation is more important. Thus, we perform a user study on Amazon
Mechanical Turk (AMT). Similar to previous works [19,24], given the input
selfie and a pair of results generated by our approach and one of the baseline
approaches, users are asked to pick one that looks better than the other. Within
each Human Intelligence Task (HIT), we compare our method with the same
baseline method. We randomly generate 200 result pairs including 10 sanity
pairs where the answers are obvious. After filtering out careless users based on
their answers on the sanity pairs, we calculate the user study statistics using the
remaining 190 questions. We have three HITs for three baseline methods. Each
HIT is done by 20 users. As shown in Table. 1, our method is preferred over
others. We assume a null hypothesis that on average, half the users prefer ours
for a given paired comparison. We use a one-sample permutation t-test [12] to
measure p using 106 permutations and find p < 10�6 for the 3 baselines.
Quantitative evaluation. Since we do not have the ground truth neutral
portraits corresponding to input selfies, we cannot use metrics like SSIM. To
quantitatively compare our result quality with other baselines, we report Frechet
Inception Distance (FID) [17] and Kernel Inception Distance (KID) [4] as shown
in Table. 1. We aim to translate the body into a neutral pose while keeping
the rest of the image intact. Therefore, a good translation method should have

Model Human Prefers Ours FID# KID#

DPIG [32] 0.798 88.27 0.026
VUNET [10] 0.851 135.90 0.077
PATN [63] 0.822 104.74 0.041
Ours N/A 71.93 0.014
Table 1: User study and, FID/KID scores.

Model FID# KID#

Ours w/o LG2
P 82.09 0.019

Ours w/o Deform 73.87 0.017
Ours w/o Gated 72.89 0.014
Ours 71.93 0.014

Table 2: Ablation study.

[2]
[3]

[4]



Our multi-modal results
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Limitation and future work
• Pose search failure

• DensePose/Mask detection failure

Input Result

Input Mask Result



Pros and cons of BG inpainting
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Thank you!

Unselfie: Translating Selfies to 
Neutral-pose Portraits in the Wild

Project page: http://charliememory.github.io/ECCV20_Unselfie/

Model

Model

Homepage: http://charliememory.github.io/

Email: liqian.ma@esat.kuleuven.be

http://charliememory.github.io/ECCV20_Unselfie/
http://charliememory.github.io/

