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Abstract

Generating novel, yet realistic, images of persons is a
challenging task due to the complex interplay between the
different image factors, such as the foreground, background
and pose information. In this work, we aim at generat-
ing such images based on a novel, two-stage reconstruc-
tion pipeline that learns a disentangled representation of
the aforementioned image factors and generates novel per-
son images at the same time. First, a multi-branched recon-
struction network is proposed to disentangle and encode the
three factors into embedding features, which are then com-
bined to re-compose the input image itself. Second, three
corresponding mapping functions are learned in an adver-
sarial manner in order to map Gaussian noise to the learned
embedding feature space, for each factor, respectively. Us-
ing the proposed framework, we can manipulate the fore-
ground, background and pose of the input image, and also
sample new embedding features to generate such targeted
manipulations, that provide more control over the gener-
ation process. Experiments on the Market-1501 and Deep-
fashion datasets show that our model does not only generate
realistic person images with new foregrounds, backgrounds
and poses, but also manipulates the generated factors and
interpolates the in-between states. Another set of experi-
ments on Market-1501 shows that our model can also be
beneficial for the person re-identification task1.

1. Introduction
The process of generating realistic-looking images of

persons has several applications, like image editing, person
re-identification (re-ID), inpainting or on-demand generated
art for movie production. The recent advent of image gener-

∗Corresponding author
1Project page is at http://homes.esat.kuleuven.be/

˜liqianma/CVPR18_DPIG/index.html
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Figure 1: Left: image sampling results on Market-1501.
Three factors, i.e. foreground, background and pose, can be
sampled independently (1st-3rd rows) and jointly (4th row).
Right: similar joint sampling results on DeepFashion.This
dataset contains almost no background, so we only disen-
tangle the image into appearance and pose factors.

ation models, such as variational autoencoders (VAE) [13],
generative adversarial networks (GANs) [7] and autoregres-
sive models (ARMs) (e.g. PixelRNN [35]), has provided
powerful tools towards this goal. Several papers [25, 2, 1]
have then exploited the ability of these networks to generate
sharp images in order to synthesize realistic photos of faces
and natural scenes. Recently, Ma et al. [21] proposed an
architecture to synthesize novel person images in arbitrary
poses given as input an image of that person and a new pose.

From an application perspective however, the user often
wants to have more control over the generated images (e.g.
change the background, a person’s appearance and clothing,
or the viewpoint), which is something that existing meth-
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ods are essentially uncapable of. We go beyond these con-
straints and investigate how to generate novel person im-
ages with a specific user intention in mind (i.e. foreground
(FG), background (BG), pose manipulation). The key idea
is to explicitly guide the generation process by an appropri-
ate representation of that intention. Fig. 1 gives examples
of the intended generated images.

To this end, we disentangle the input image into interme-
diate embedding features, i.e. person images can be reduced
to a composition of features of foreground, background, and
pose. Compared to existing approaches, we rely on a differ-
ent technique to generate new samples. In particular, we
aim at sampling from a standard distribution, e.g. a Gaus-
sian distribution, to first generate new embedding features
and from them generate new images. To achieve this, fake
embedding features ẽ are learned in an adversarial manner
to match the distribution of the real embedding features e,
where the encoded features from the input image are treated
as real whilst the ones generated from the Gaussian noise
as fake (Fig. 2). Consequently, the newly sampled images
come from learned fake embedding features ẽ rather than
the original Gaussian noise as in the traditional GAN mod-
els. By doing so, the proposed technique enables us not only
to sample a controllable input for the generator, but also to
preserve the complexity of the composed images (i.e. real-
istic person images).

To sum up, our full pipeline proceeds in two stages as
shown in Fig. 2. At stage-I, we use a person’s image as
input and disentangle the information into three main fac-
tors, namely foreground, background and pose. Each disen-
tangled factor is modeled by embedding features through a
reconstruction network. At stage-II, a mapping function is
learned to map a Gaussian distribution to a feature embed-
ding distribution.

Our contributions are: 1) A new task of generating natu-
ral person images by disentangling the input into weakly
correlated factors, namely foreground, background and
pose. 2) A two-stage framework to learn manipulatable em-
bedding features for all three factors. In stage-I, the en-
coder of the multi-branched reconstruction network serves
conditional image generation tasks, whereas in stage-II the
mapping functions learned through adversarial training (i.e.
mapping noise z to fake embedding features emb) serve
sampling tasks (i.e. the input is sampled from a standard
Gaussian distribution). 3) A technique to match the distri-
bution of real and fake embedding features through adver-
sarial training, not bound to the image generation task. 4)
An approach to generate new image pairs for person re-ID.
Sec. 4 constructs a Virtual Market re-ID dataset by fixing
foreground features and changing background features and
pose keypoints to generate samples of one identity.
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Figure 2: Our two-stage framework. In stage-I, we use a re-
construction network to obtain the real embedding features
e for each factor, i.e. foreground, background and pose. The
architectural details of stage-I are shown in Figure 3. In
stage-II, we propose a novel, two-step mapping technique
for adversarial embedding feature learning that first map
Gaussian noise z to intermediate embedding features ẽ then
to the data x̃. We use the pre-trained encoder and decoder
of stage-I to guide the learning of mapping functions Φ.

2. Related work

Image generation from noise. The ability of generative
models, such as GANs [7], adversarial autoencoders (AAE)
[22], VAEs [13] and ARMs (e.g. PixelRNN [35]), to syn-
thesize realistic-looking, sharp images has led image gen-
eration research lately. Traditional image generation works
use GANs [7] or VAEs [13] to map a distribution generated
by noise z to the distribution of real data. Convolutional
VAEs and AAEs [22] have shown how to transform an auto-
encoder into a generator, but in this case, it is rather difficult
to train the mapping function for complex data distributions,
such as person images (as also mentioned in ARAE-GAN
[11]). As such, traditional image generation methods are
not optimal when it comes to the human body. For exam-
ple, Zheng et al. [42] directly adopted the DCGAN archi-
tecture [25] to generate person images from noise, but as
Fig. 7(b) shows, vanilla DCGAN leads to unrealistic results.
Instead, we propose a two-step mapping technique in stage-
II to guide the learning, i.e. z → e→ x (Fig. 2). Similar to
[11], we use a decoder to adversarially map the noise distri-
bution to the feature embedding distribution learned by the
reconstruction network.

Conditional image generation. Since the human body
has a complex non-rigid structure with many degrees of
freedom [23], several works have used structure conditions
to generate person images. Reed et al. in [26] proposed
the Generative Adversarial What-Where Network that uses
pose keypoints and text descriptions as condition, whereas
in [27] they used an extension of PixelCNN in addition
to conditioning on part keypoints, segmentation masks and
text to generate images on the MPI Human Pose dataset,
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Figure 3: Stage-I: disentangled image reconstruction. This framework is composed of three branches: foreground, back-
ground and pose. Note that we use a fully-connected auto-encoder network to reconstruct the pose (incl. keypoint coordinates
and visibility), so that we can decode the embedded pose features to obtain the heatmaps at the sampling phase.

among others. Lassner et al. [15] generated full-body im-
ages of persons in clothing by conditioning on fine-grained
body and clothing segments, e.g. pose, shape or color. Zhao
et al. [39] combined the strengths of GANs with variational
inference to generate multi-view images of persons in cloth-
ing in a coarse-to-fine manner. Closer to our work, Ma
et al. [21] proposed to condition on image and pose key-
points to transfer the human pose in a flexible way. Facial
landmarks can be transfered accordingly [32]. Yet, their
methods need the training set of aligned person image pairs
which costs expensive human annotations. Most recently,
Zhu et al. [43] proposed the CycleGAN that uses cycle con-
sistency to achieve unpaired image-to-image translation be-
tween domains. They achieve compelling results in appear-
ance changes but show little success in geometric changes.

Since images themselves contain abundant context infor-
mation [33], some works have tried to tackle the problem in
an unsupervised way. Doersch et al. [4] explored the use of
spatial context, i.e. relative position between two neighbor-
ing patches in an image, as a supervisory signal for unsu-
pervised visual representation learning. Noroozi et al. [24]
extended the task to a jigsaw puzzle solved by observing
all the tiles simultaneously, which can reduce the ambigu-
ity among these local patch pairs. Lee et al. [16] utilized
context in an image generation task by inferring the spa-
tial arrangement and generating the image at the same time.
We use the supervision in a different way. To extract pose-
invariant appearance features, we arrange the body part fea-
ture embeddings according to the region-of-interest (ROI)
bounding boxes obtained with pose keypoints. Then, we ex-
plicitly utilize these pose keypoints as structure information
to select the necessary appearance features for each body
part and generate the entire person image.

In general, this paper studies a different problem than

these supervised or unsupervised approaches and tries to
solve the disentangled person image generation task in
an unpaired, self-supervised manner, by leveraging fore-
ground, background and pose sampling at the same time,
in order to gain more control over the generation process.

Disentangled image generation. Few papers have al-
ready tried to work towards this direction by learning a dis-
entangled representation of the input image. Chen et al. [2]
proposed InfoGAN, an extension to GANs, to learn disen-
tangled representations using mutual information in an un-
supervised manner, like writing styles from digit shapes on
the MNIST dataset, pose from lighting of 3D rendered im-
ages, and background digits from the central digit on the
SVHN dataset. Cheung et al. [3] added a cross-covariance
penalty in a semi-supervised autoencoder architecture in or-
der to disentangle factors, like hand-writing style for digits
and subject identity in faces. Tran et al. [34] proposed DR-
GAN to learn both a generative and a discriminative rep-
resentation from one or multiple face images to synthesize
identity-preserving faces at target poses. In contrast, our
method gives an explicit representation of the main 3 axis of
variation (foreground, background, pose). Moreover, train-
ing is facilitated without a need for expensive identity an-
notations - which is not readily available at scale.

3. Method
Our goal is to disentangle the appearance and structure

factors in person images, so that we can manipulate the fore-
ground, background and pose separately. To achieve this,
we propose a two-stage pipeline shown in Fig. 2. In stage-I,
we disentangle the foreground, background and pose fac-
tors using a reconstruction network in a divide-and-conquer
manner. In particular, we reconstruct person images by
first disentangling into intermediate embedding features of
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the three factors, then recover the input image by decoding
these features. In stage-II, we treat these features as real to
learn mapping functions Φ for mapping a Gaussian distri-
bution to the embedding feature distribution adversarially.

3.1. Stage-I: Disentangled image reconstruction

At stage-I, we propose a multi-branched reconstruction
architecture to disentangle the foreground, background and
pose factors as shown in Fig. 3. Note that, to obtain the
pose heatmaps and the coarse pose mask we adopt the same
procedure as in [21], but we instead use them to guide the
information flow in our multi-branched network.
Foreground branch. To separate the foreground and back-
ground information, we apply the coarse pose mask to the
feature maps instead of the input image directly. By do-
ing so, we can alleviate the inaccuracies of the coarse pose
mask. Then, in order to further disentangle the foreground
from the pose information, we encode pose invariant fea-
tures with 7 Body Regions-Of-Interest instead of the whole
image similar to [40]. Specifically, for each ROI we extract
the feature maps resized to 48×48 and pass them into the
weight sharing foreground encoder to increase the learning
efficiency. Finally, the encoded 7 body ROI embedding fea-
tures are concatenated into a 224D feature vector. Later, we
use BodyROI7 to denote our model which uses 7 body ROIs
to extract foreground embedding features, and use Whole-
Body to denote our model that extracts foreground embed-
ding features from the whole feature maps directly instead
of extracting and resizing the ROI feature map.
Background branch. For the background branch, we ap-
ply the inverse pose mask to get the background feature
maps and pass them into the background encoder to ob-
tain a 128-dim embedding feature. Then, the foreground
and background features are concatenated and tiled into
128×64×352 appearance feature maps.
Pose branch. For the pose branch, we concatenate the 18-
channel heatmaps with the appearance feature maps and
pass them into the a “U-Net”-based architecture [29], i.e.,
convolutional autoencoder with skip connections, to gen-
erate the final person image following PG2 (G1+D) [21].
Here, the combination of appearance and pose imposes a
strong explicit disentangling constraint that forces the net-
work to learn how to use pose structure information to se-
lect the useful appearance information for each pixel. For
pose sampling, we use an extra fully-connected network to
reconstruct the pose information, so that we can decode the
embedded pose features to obtain the heatmaps. Since some
body regions may be unseen due to occlusions, we intro-
duce a visibility variable αi ∈ {0, 1}, i = 1, ..., 18 to repre-
sent the visibility state of each pose keypoint. Now, the pose
information can be represented by a 54-dim vector (36-dim
keypoint coordinates γ and 18-dim keypoint visibility α).

3.2. Stage-II: Embedding feature mapping

Images can be represented by a low-dimensional, con-
tinuous feature embedding space. In particular, in [36,
30, 37, 5] it has been shown that they lie on or near a
low-dimensional manifold of the original high-dimensional
space. Therefore, the distribution of this feature embedding
space should be more continuous and easier to learn com-
pared to the real data distribution. Some works [38, 8, 28]
have then attempted to use the intermediate feature repre-
sentations of a pre-trained DNN to guide another DNN.
Inspired by these ideas, we propose a two-step mapping
technique as illustrated in Fig. 2. Instead of directly learn-
ing to decode Gaussian noise to the image space, we first
learn a mapping function Φ that maps a Gaussian space
Z into a continuous feature embedding space E, and then
use the pre-trained decoder to map the feature embedding
space E into the real image space X. The encoder learned
in stage-I encodes the FG, BG and Pose factors x into low-
dimensional real embedding features e. Then, we treat the
features mapped from Gaussian noise z as fake embedding
features ẽ and learn the mapping function Φ adversarially.
In this way, we can sample fake embedding features from
noise and then map them back to images using the decoder
learned in stage-I. The proposed two-step mapping tech-
nique is easy to train in a piecewise style and most impor-
tantly can be useful for other image generation applications.

3.3. Person image sampling

As explained, each image factor can not only be encoded
from the input information, but also be sampled from Gaus-
sian noise. As to the latter, to sample a new foreground,
background or pose, we combine the decoders learned in
stage-I and mapping functions learned in stage-II to con-
struct a z → ẽ → x̃ sampling pipeline (Fig. 4). Note that,
for foreground and background sampling the decoder is a
convolutional “U-net”-based architecture, while for pose
sampling the decoder is a fully-connected one. Our exper-
iments show that our framework performs well when used
in both a conditional and an unconditional way.

3.4. Network architecture

Here, we describe the proposed architecture. For both
stages, we use residual blocks to make the training easier.
All convolution layers consist of 3×3 filters and the num-
ber of filters increases linearly with each block. All fully-
connected layers consist of 512-dim, except for the bottle-
neck layers. We apply rectified linear units (ReLU) to each
layer, except for the bottleneck and the output layers.

For the foreground and background branches in stage-I,
the input image is fed into a convolutional residual block
and the pose mask is used to extract the foreground and
background feature maps. Then, the masked foreground
and background feature maps are passed into an encoder
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Figure 4: Sampling phase: Sample foreground, background and pose from Gaussian noise to compose new person images.

consisting of N convolutional residual blocks, respectively,
where N depends on the size of the input. Similar to [21],
each residual block consists of two convolution layers with
stride=1, followed by one sub-sampling convolution layer
with stride=2, except for the last block. For the decoder,
an “U-Net”-based architecture [29] is used with N convo-
lutional residual blocks before and after the bottlenecks, re-
spectively, following PG2 (G1+D) [21].

For pose reconstruction, we use an auto-encoder archi-
tecture where both encoder and decoder consist of 4 fully-
connected residual blocks with 32-dim bottleneck layers.
As in [9], we use a densely-connected-like architecture, i.e.
each residual block consists of two fully-connected layers.

For each mapping function in stage-II, we use a fully-
connected network consisting of 4 fully-connected residual
blocks to map K-dim Gaussian noise z to K-dim embed-
ding features e. For the discriminator, we adopt a fully-
connected network with 4 fully-connected layers.

3.5. Optimization strategy

The training procedures of stage-I and stage-II are sep-
arated, since the mapping functions Φfg, Φbg and Φpose in
stage-II can be trained in a piecewise style. In stage-I, we
use both L1 and adversarial loss to optimize the image (i.e.
foreground and background) reconstruction network. This
choice is known to result in sharper and more realistic im-
ages. In particular, we use G1 and D1 to denote the image
reconstruction network and the corresponding discriminator
in stage-I. The overall losses for G1 and D1 are as follows,

LD1

R =Ex∼pdata(x)

[
logD1(x)

]
+

Ex∼pdata(x)

[
log (1−D1(G1(x, h)))

]
, (1)

LG1

R =Ex∼pdata(x)

[
log (D1(G1(x, h)))

]
+

λ‖(G1(x, h)− x)‖1, (2)

where x denotes the person image, h denotes the pose
heatmaps, and λ is the weight of L1 loss controlling how

close the reconstruction looks like to the input image at low
frequencies. For pose reconstruction, we use the L2 loss to
reconstruct the input pose information including keypoint
coordinates γ and visibility α mentioned in Sec. 3.1,

LPose
R = E(γ,α)∼pdata(γ,α)‖(G1(γ, α)− (γ, α)‖22, (3)

After training the reconstruction network in stage-I, we
fix it and use the Wasserstein GAN [1] loss to optimize the
fully-connected network of mapping functions in stage-II.
We use Φ and D2 to denote the mapping functions (incl.
Φfg, Φbg and Φpose) and the corresponding discriminators in
stage-II. The overall losses for Φ and D2 are as follows,

LD2

M =Ee∼pemb(e)

[
D2(e)

]
− Ez∼pz(z)

[
D2(Φ(z))

]
, (4)

LΦ
M =Ez∼pz(z)

[
D2(Φ(z))

]
, (5)

where e denotes the embedding features extracted from the
reconstruction network in stage-I, z denotes the Gaussian
noise. Note that, we also tried the vanilla GAN loss but
suffered a model collapse. For adversarial training, we op-
timize the discriminator and generator alternatively.

4. Experiments
The proposed pipeline enables many applications, incl.

image manipulation, pose-guided person image generation,
image interpolation, image sampling and person re-ID.2

4.1. Datasets and metrics
Our main experiments use the challenging re-ID dataset

Market-1501 [41], containing 32,668 images of 1,501 per-
sons captured from six disjoint surveillance cameras. All
images are resized to 128×64 pixels. We use the same
train/test split (12,936/19,732) as in [41], but use all the im-
ages in the train set for training without any identity label.

2More generated results, parameters of our network architecture and
training details are given in the supplementary material.
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For pose-guided person image generation, we randomly se-
lect 12,800 pairs in the test set for testing, following [21].
For re-ID, we follow the same testing protocol as in [41].

We also experiment with a high-resolution dataset,
namely DeepFashion (In-shop Clothes Retrieval Bench-
mark) [20], that consists of 52,712 in-shop clothes images
and 200,000 cross-pose/scale pairs. Following [21], we
use the up-body person images and filter out failure cases
in pose estimation for both training and testing. Thus, we
have 15,079 training images and 7,996 testing images. We
also randomly select 12,800 pairs from the test set for pose-
guided person image generation testing.
Implementation details. For Market-1501, our method is
applied to disentangle the image into three factors: fore-
ground, background and pose. We set the number of con-
volutional residual blocks N = 5 for foreground and back-
ground encoders and decoders. For DeepFashion, since it
contains almost no background, we disentangle the images
into only two factors: appearance and pose. We set the num-
ber of convolution blocksN = 7 for the foreground encoder
and decoder. On both datasets, we do a left-right flip data
augmentation. For the pose keypoints and mask extraction,
we use the same procedure as [21].

4.2. Image manipulation
As explained, a person’s image can be disentangled into

three factors: FG, BG and Pose. Each factor can then be
generated either from a Gaussian signal (sampling) or con-
ditioned on input data, namely image and pose (condition-
ing). The conditional case contains at least one other fac-
tor sampled from Gaussian signals. In Fig. 1, the left-top3
rows show examples with one-factor sampling and two-
factor conditioning for FG, BG and Pose on Market-1501,
respectively. Our framework successfully manipulates each
intended factor while keeping the others unchanged. In the
first row, we sample foreground with zfg → ẽfg and con-
dition background and pose with x → e, so that different
cloth colors, styles and hair styles can be generated while
the pose and background stay mostly the same. Similarly,
we can manipulate the background and pose independently
as shown in the left-second/third row. The left-last row
shows a sampling example without any conditioning. In
this way, we can sample novel person images from noise
and still generate realistic images compared to vanilla VAE
and DCGAN as shown in Sec. 4.5. Finally, on the right rows
we show that our method can also sample 256×256 images
with realistic cloth and hair details on DeepFashion.

4.3. Pose-guided person image generation
We compare our method with PG2 [21] on pose-

conditional person image generation. Unlike PG2, our
method does not need paired training images. As shown
in Fig. 5, our method can generate more realistic details

DeepFashion Market-1501

Model SSIM IS SSIM IS mask-SSIM mask-IS

PG2[21] 0.762 3.090 0.253 3.460 0.792 3.435
Ours 0.614 3.228 0.099 3.483 0.614 3.491

Table 1: Quantitative evaluation. Higher scores are better.

and less artifacts. Especially, the arms and legs are better
shaped on both datasets, and the hair details are more clear
on DeepFashion. This is in agreement with the Inception
Score (IS) and mask Inception Score (mask-IS) in Table 1.
The SSIM score of our method is lower than PG2 mainly
for two reasons. 1) In stage-I, there are no skip-connections
between encoder and decoder, and as such our method has
to generate images from compressed embedding features in-
stead of pixel level transforms like in PG2, which is a harder
task. 2) Our method generates sharper images which might
decrease the SSIM score, as also observed in [21, 10, 31].

4.4. Image interpolation
Interpolation is possible for sampled and real images.

Sampling interpolation. For sampling interpolation, we
directly interpolate in Gaussian space and generate images
in a z → ẽ → x̃ manner. We first interpolate linearly
between two Gaussian codes z1 and z2 to obtain interme-
diate codes zi, which in turn are mapped into embedding
features ẽi using the learned mapping functions. The per-
son’s image is then generated from the embedding features
ẽi. As Fig. 6(a)(b)(c) shows, our method can smoothly in-
terpolate each factor in Gaussian space separately, hence:
1) our method can learn foreground, background and pose
encoders in a disentangled way; 2) these can map real
high-dimensional data distributions into continuous low-
dimensional feature embedding distributions; 3) the map-
pings trained adversarially can map Gaussian to feature em-
bedding distributions; 4) the decoder can map feature em-
bedding distributions back to real data distributions.
Inverse interpolation To interpolate between real data
(incl. image and pose keypoints), we proceed in 3 steps. 1)
x→ e: Use the learned encoders to encode real data x into
embedding features e. 2) e → z: Use gradient-based min-
imization [19] to find the corresponding Gaussian codes z.
3) z → ẽ → x̃: Interpolate linearly between two Gaussian
codes, then map intermediate codes into embedding fea-
tures - using the learned mapping functions - to generate the
person images. As shown in Fig. 6, our method interpolates
reasonable frames between the input pair showing a person
with different poses. The result shows realistic intermediate
states and can be used to predict potential behaviors.

4.5. Sampling results comparison
In this experiment, we compare sampling results from

our method and baseline models, i.e. VAE [13] and DC-
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e1 and e2, then to Gaussian codes z1 and z2. We then follow the same procedure as in (a)(b)(c).

GAN [25]. As illustrated in Fig. 7, VAE generates blurry
images and DCGAN sharp but unrealistic person images.
In contrast, our model generates more realistic images (see
Fig. 7(c)(d)(e)). By comparing (d) and (c), we observe that
our model using body ROI generates more sharp and real-
istic images whose colors on each body part are more natu-
ral. A similar tendency can be observed for re-ID. By com-
paring (e) and (d), we see that when sampling foreground
and background but using the real pose keypoints randomly
selected from the training data, we generate better results.
Therefore, we use this setting in (e) to sample virtual data
for the following re-ID experiment.

4.6. Person re-identification
Person re-ID associates images of the same person

across views or time. Given the query person image, re-ID
is expected to provide matching images of the same iden-
tity. We propose to use the re-ID performance as a quan-

titative metric for our generation approach. We adopt the
re-ID model in [6] and use rank-1 matching rate and mean
Average Precision (mAP) following [41]. We show that
our approach can be evaluated in two ways: (1) use FG
features extracted in stage-I for re-ID; (2) generate virtual
image pairs to train re-ID model. The virtual market data
is denoted as “VM” generated with our BodyROI7 model.
Note that, CUHK03 [17] and Duke [42] datasets are used
with identity labels, while Market-1501 and VM datasets
are used with no labels.

Using embedding features. We use the FG encoder to ex-
tract the features for re-ID and use the re-ID performance to
evaluate the reconstruction network in stage-I. Intuitively,
the re-ID performance will be higher if the encoded features
are more representative. Euclidean distance is used to calcu-
late the extracted features after l2-norm normalization [6].
As shown in the top rows of Table 2, our BodyROI7 model
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(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(a) VAE [13]

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(b) DCGAN [25]

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(c) Ours - Whole Body

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(d) Ours - BodyROI7

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(e) Ours - BodyROI7 with real pose from training set

(d) Image number: 12800
IS: 3.20381 +- 0.06215
mask-IS: 3.33343 +- 0.04592      

(c) Image number: 12800
IS: 3.15911 +- 0.05271  
mask-IS: 3.32047 +- 0.07383         

(g) Image number: 12800
IS: IS: 3.82968 +- 0.08038   
mask-IS: 3.790187 +- 0.039664

(a) Image number: 12800
IS: 3.35665 +- 0.06024  
mask-IS: 2.58552 +- 0.04934

(b) Image number: 12800 iter 18k
IS: 3.64518 +- 0.05892 
mask-IS: 3.54981 +- 0.07244

(c) Image number: 12800
IS: 3.42419 +- 0.07747   
mask-IS: 3.47919 +- 0.06913   

(f) Real data

Figure 7: Sampling results comparison. From left to right and from top to bottom: (a) VAE [13] (b) DCGAN [25] (c) Ours -
Whole Body (d) Ours - BodyROI7 (e) Ours - BodyROI7 with real pose from training set (f) Real data.

Figure 8: Virtual identities for re-ID model training. Each
column contains a pair of images of one identity (one FG).
BG and Pose are randomly selected from training data.

Model Training data Rank-1 mAP

Bow [41] Market 0.344 0.141
Bow* [41] Market 0.358 0.148
LOMO* [18] / 0.272 0.08
WholeBody feature (Ours) Market 0.307 0.100
BodyROI7 feature (Ours) Market 0.338 0.107
BodyROI7 feature PCA (Ours) Market 0.355 0.114

Res50* [6] CUHK03 (labeled) 0.300 0.115
Res50* [6] Duke (labeled) 0.361 0.142
Res50 VM 0.338 0.134
Res50+PUL VM+Market 0.369 0.156
Res50+PUL+KISSME VM+Market 0.375 0.154

Table 2: Re-ID results on Market-1501. Top: using embed-
ding features. Bottom: using VM and Market-1501 dataset
without labels. Higher scores are better. *Results are re-
ported in [6]. / means that hand-crafted feature extractor
LOMO does not require training data.

achieves 0.338 and 0.355 (with PCA) rank-1 performance,
higher than our WholeBody model, which is in accordance
with the sampling results in Sec. 4.5. Besides, our method
can achieve comparable performance with the unsupervised
baseline methods, which indicates that our encoder can ex-
tract not only generative but also discriminative features.
Using generated virtual image pairs. We use the gener-
ated image pairs to train the re-ID model and use the re-
ID performance to evaluate our generation framework in an
indirect manner. We first generate the VM re-ID dataset

consisting of 500 identities with 24 images for each ID as
illustrated in Fig. 8. For each identity, we randomly sample
one foreground feature and 24 background features and ran-
domly select 24 pose keypoint heatmaps from the Market-
1501 training data. Then, we use the same re-ID model and
training procedure as in [6], but with different training data.
As shown in the bottom rows of Table 2, using our VM data
the model can achieve the rank-1 performance 0.338 which
is comparable to the model trained using another Duke re-
ID dataset. When using the post-processing progressive un-
supervised learning (PUL) proposed in [6], the rank-1 per-
formance is improved to 0.369. Additionally, using our VM
data, we can train a metric model, e.g. KISSME [14], and
further improve the rank-1 performance to 0.375. Com-
pared to the model trained using CUHK03 (rank-1 0.300)
or Duke (rank-1 0.361) re-ID dataset with expensive human
annotations, our method achieves better performance using
only Market dataset without identity labels. These results
show that our disentangled generated images are similar to
the real data and can be further beneficial to re-ID tasks.

5. Conclusion
We propose a novel two-stage pipeline for addressing the

person image generation task. Stage-I disentangles and en-
codes three modes of variation in the input image, namely
foreground, background and pose, into embedding features
then decodes them back to an image using a multi-branched
reconstruction network. Stage-II learns mapping functions
in an adversarial manner for mapping noise distributions
to feature embedding distributions guided by the decoders
learned in stage-I. Experiments show that our method can
manipulate the input foreground, background and pose, and
sample new embedding features to generate intended ma-
nipulations of these factors, thus providing more control. In
the future, we plan to apply our method to faces and rigid
object images with different types of structure.
Acknowledgments This research was supported in part by
Toyota Motors Europe, German Research Foundation (DFG
CRC 1223).
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Supplementary materials

This supplementary material includes additional details
regarding the network architecture (§A) and training (§B),
as well as extended results for image manipulation (§C),
pose-guided person image generation (§D), inverse interpo-
lation (§E) and image sampling (§F), respectively.

A. Network architecture

In this section, we provide details regarding the net-
work architectures in our two-stage framework used on the
Market-1501 dataset. Fig. 10 shows 4 network architec-
tures used at stage-I: 1) FG encoder consists of 5 convo-
lutional residual blocks; 2) BG encoder consists of 5 con-
volutional residual blocks; 3) FG & BG decoder follows a
“U-net”-based architecture; 4) Pose auto-encoder follows
a fully-connected auto-encoder architecture. Fig. 9 shows
the network architecture of the mapping functions Φ used
at stage-II. It contains 4 fully-connected residual modules.

B. Training details

On Market-1501, our method is applied to disentangle
the image into three factors: foreground, background and
pose. We train the foreground and background models with
a mini-batch of size 16 for ∼70k iterations at stage-I and
with a mini-batch of size 32 for ∼30k iterations at stage-II.
The pose models are trained with a mini-batch of size 64 for
∼30k iterations at stage-I and with a mini-batch of size 32
for ∼60k iterations at stage-II.

DeepFashion data contain clean background, therefore,
our method is applied to disentangle the image into only two
factors: appearance (i.e. foreground) and pose. We train the
appearance model with a minibatch of size 6 for ∼100k it-
erations at stage-I and with a minibatch of size 16 for∼60k
iterations at stage-II. The pose models are trained with a
minibatch of size 32 for ∼30k iterations at stage-I and with
a minibatch of size 32 for ∼60k iterations at stage-II.

On both datasets, we use the Adam optimizer [12] with
weights β1 = 0.5 and β2 = 0.999. The initial learning
rate is set to 2e-5. For adversarial training, we optimize the
discriminator and generator alternatively.

C. Image manipulation results

In Fig. 11 and Fig. 12, we provide results on appearance
sampling and pose sampling for the DeepFashion dataset as
an extension of Fig. 1 in the main paper. For each factor, we
sample the embedding feature from Gaussian noise and fix
the other factors by using the embedding feature extracted
from the real data as explained in Sec. 4.2 in the main paper.

D. Pose-guided person image generation re-
sults

For pose-guided person image generation, we provide
more generated results. As an extension of Fig. 5 in the
main paper, Fig. 13 shows the generated images of one ap-
pearance with various real poses selected randomly from
DeepFashion.

E. Inverse interpolation results
In this section, we provide more inverse interpolation re-

sults in Fig.14 as an extension of Fig. 6 in the main paper.
For two images x1 and x2, we find the corresponding Gaus-
sian codes z1 and z2 as explained in the Sec. 4.4 of the main
paper. As shown in Fig. 14(a)(b), our method successfully
generates the intermediate states between two images of the
same person. Note that, the inverse interpolation between
two images of different persons is more challenging (see
Fig. 14(c)) since we need to interpolate both the appearance
and pose.

F. Image sampling results
We also give more sampling results as extensions of

Fig.7 in the main paper. Fig. 15 shows the sampling results
(a-e) and real images (f) on Market-1501 dataset. VAE gen-
erates blurry images and DCGAN sharp but unrealistic per-
son images. In contrast, our model generates more realistic
images (c)(d)(e). By comparing (d) and (c), we observe that
our model using body ROI generates more sharp and realis-
tic images whose colors on each body part are more natural.
By comparing (e) and (d), we see that when sampling fore-
ground and background but using the real pose keypoints
randomly selected from the training data, we generate bet-
ter results.

K-dim

Mapping function Φ

512-dim 512-dim 512-dim 512-dim K-dim

K=352 for FG
K=128 for BG
K=54 for Pose

Gaussian 
Noise
z Embedding

Feature

Figure 9: Network architecture of the mapping functions for
FG, BG and Pose in stage-II.
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(d)

Figure 10: Network architectures of stage-I. (a) FG encoder, fed with the extracted 7 FG body ROI feature maps and out-
putting 7 FG embedding features of 32-dim after 5 convolutional residual blocks. (b) BG encoder, fed with the BG feature
maps and outputting a BG embedding feature of 128-dim after 5 convolutional residual blocks. (c) FG and BG decoder, fed
with the concatenated appearance and pose feature maps and outputting the generated image after the “U-net”-based [29]
architecture. (d) Pose auto-encoder, fed with the concatenated keypoint coordinates and visibility vector and outputting the
reconstructed vector after the auto-encoder.
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Figure 11: Appearance sampling (fixed Pose) results on the DeepFashion dataset. In each row, 6 different appearance factors
are sampled from Gaussian noise and the pose factor is fixed to a real one.
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Figure 12: Pose sampling (fixed Appearance) results on the DeepFashion dataset. In each row, 6 different pose factors are
sampled from Gaussian noises and the appearance factor is fixed to a real one.
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Figure 13: Generated results for one appearance with various poses on the DeepFashion dataset.
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Figure 14: Inverse interpolation results on Market-1501. (a) Interpolation between two images of the same person. (b)
Interpolation between three images of the same person. (c) Interpolation between two images of different persons.
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(a) Vanilla VAE (b) Vanilla DCGAN (c) Ours - Whole Body

(d) Ours - BodyROI7 (e) Ours - BodyROI7 with real pose from training set (f) Real data

Figure 15: Sampling results. (a) Vanilla VAE; (b) Vanilla DCGAN; (c) Ours - Whole Body; (d) Ours - BodyROI7; (e) Ours -
BodyROI7 pose with real pose from training set; (f) Real data.
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