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Abstract

In this work, we focus on synthesizing high-fidelity novel
view images for arbitrary human performers, given a set
of sparse multi-view images. It is a challenging task due to
the large variation among articulated body poses and heavy
self-occlusions. To alleviate this, we introduce an effec-
tive generalizable framework Generalizable Model-based
Neural Radiance Fields (GM-NeRF) to synthesize free-
viewpoint images. Specifically, we propose a geometry-
guided attention mechanism to register the appearance
code from multi-view 2D images to a geometry proxy which
can alleviate the misalignment between inaccurate geome-
try prior and pixel space. On top of that, we further conduct
neural rendering and partial gradient backpropagation for
efficient perceptual supervision and improvement of the per-
ceptual quality of synthesis. To evaluate our method, we
conduct experiments on synthesized datasets THuman2.0
and Multi-garment, and real-world datasets Genebody and
ZJUMocap. The results demonstrate that our approach out-
performs state-of-the-art methods in terms of novel view
synthesis and geometric reconstruction.

1. Introduction
3D digital human reconstruction has a wide range of ap-

plications in movie production, telepresence, 3D immersive
communication, and AR/VR games. Traditional digital hu-
man production relies on dense camera arrays [10, 14] or
depth sensors [12, 20] followed by complex graphics ren-
dering pipelines for high-quality 3D reconstruction, which
limits the availability to the general public.

Reconstructing 3D humans from 2D images captured
by sparse RGB cameras is very attractive due to its low
cost and convenience. This field has been studied for
decades [21, 46, 50]. However, reconstruction from sparse
RGB cameras is still quite challenging because of: 1) heavy
self-occlusions of the articulated human body; 2) inconsis-
tent lighting and sensor parameters between different cam-
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Figure 1. The effect of inaccurately estimated SMPL. Com-
pared with GNR [8] and KeypointNeRF [26], our method still
yields a reasonable result.

eras; 3) highly non-rigid and diverse clothes.
In recent years, with the rise of learning-based methods,

we can reconstruct high-quality digital humans from sparse
cameras. Learning-based methods [32, 36, 43, 49, 52] have
made great processes, however, they lack multi-view geo-
metric consistency due to the mere usage of a 2D neural
rendering network. To address this problem, many recent
works [5, 47, 54] adopt neural radiance fields as 3D rep-
resentations, which achieves outstanding performance on
novel view synthesis. However, these methods are not ro-
bust to unseen poses without the guidance of human geo-
metric prior.

To better generalize to unseen poses, NeuralBody [31]
introduces a statistical body model SMPL [23] into neural
radiance fields which can reconstruct vivid digital humans
from a sparse multi-view video. However, NeuralBody is
designed for identity-specific scenarios, which means it re-
quires laborious data collection and long training to obtain
the model for one person. Such a limitation restricts its ap-
plication in general real-world scenarios.

In this work, we focus on synthesizing high-fidelity
novel view images for arbitrary human performers from a
set of sparse multi-view images. Towards this goal, some
very recent works [7, 8, 19, 26] propose to aggregate multi-
view pixel-aligned features using SMPL as a geometric
prior. However, these methods usually assume perfect ge-
ometry (e.g. accurate SMPL [23] estimation from 2D im-
ages) which is not applicable in practical applications. In
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practice, the geometry error does affect the reconstruction
performance significantly. As illustrated in the red box of
Fig. 1, when the estimated SMPL does not align well with
RGB image, prior SMPL-dependent methods [8, 26] yield
blurry and distorted results. The such performance gap is
caused by the misalignment between the 3d geometry (i.e.
SMPL) and the pixel space (i.e. pixel-aligned feature and
ground-truth image). Specifically, the misalignment will
cause: 1) blur and distortion when fusing the geometry
and pixel-aligned features; 2) unsuitable supervision during
training with a pixel-wise loss like L1 or L2. To alleviate
the issue of misalignment, we propose to take the geome-
try code as a proxy and then register the appearance code
onto the geometry through a novel geometry-guided atten-
tion mechanism. Furthermore, we leverage perceptual loss
to reduce the influence of misalignment and promote sharp
image synthesis, which is evaluated at a higher level with a
larger perceptual field. It is non-trivial to apply perceptual
loss in NeRF-based methods as the perceptual loss requires
a large patch size as input which is memory-consuming
through volume rendering. We introduce 2D neural ren-
dering and partial gradient backpropagation to alleviate the
memory requirement and enhance the perceptual quality.

To summarize, our work contributes as follows:
• A novel generalizable model-based framework GM-

NeRF is proposed for the free-viewpoint synthesis of arbi-
trary performers.
• To alleviate the misalignment between 3D geometry

and the pixel space, we propose geometry-guided attention
to aggregate multi-view appearance and geometry proxy.
• To enable perceptual loss supervision to further allevi-

ate misalignment issues, we adopt several efficient designs
including 2D neural rendering and partial gradient back-
propagation.

2. Related work
Implict Neural Representation. Implicit neural represen-
tations (also known as coordinate-based representations)
are a popular way to parameterize content of all kinds, such
as audio, images, video, or 3D scenes [27, 38, 40, 42]. Re-
cent works [25, 27, 28, 40] build neural implicit fields for
geometric reconstruction and novel view synthesis achiev-
ing outstanding performance. The implicit neural represen-
tation is continuous, resolution-independent, and expres-
sive, and is capable of reconstructing geometric surface de-
tails and rendering photo-realistic images. While explicit
representations like point clouds [1, 52], meshes [43], and
voxel grids [22, 25, 39, 44] are usually limited in resolution
due to memory and topology restrictions. One of the most
popular implicit representations - Neural Radiance Field
(NeRF) [27] - proposes to combine the neural radiance field
with differentiable volume for photo-realistic novel views
rendering of static scenes. However, NeRF requires opti-

mizing the 5D neural radiance field for each scene indi-
vidually, which usually takes hours to converge. Recent
works [5, 47, 54] try to extend NeRF to generalization with
sparse input views. In this work, we extend the neural radi-
ance field to a general human reconstruction scenario by in-
troducing conditional geometric code and appearance code.
3D Model-based Human Reconstruction With the emer-
gence of human parametric models like SMPL [23, 29]
and SCAPE [3], many model-based 3D human reconstruc-
tion works have attracted wide attention from academics.
Benefiting from the statistical human prior, some works
[2, 4, 9, 18] can reconstruct the rough geometry from a sin-
gle image or video. However, limited by the low resolu-
tion and fixed topology of statistical models, these methods
cannot represent arbitrary body geometry, such as clothing,
hair, and other details well. To address this problem, some
works [33,34] propose to use pixel-aligned features together
with neural implicit fields to represent the 3D human body,
but still have poor generalization for unseen poses. To al-
leviate such generalization issues, [15, 35, 57] incorporate
the human statistical model SMPL [23,29] into the implicit
neural field as a geometric prior, which improves the per-
formance on unseen poses. Although these methods have
achieved stunning performance on human reconstruction,
high-quality 3D scanned meshes are required as supervi-
sion, which is expensive to acquire in real scenarios. There-
fore, prior works [15, 33, 34, 57] are usually trained on syn-
thetic datasets and have poor generalizability to real scenar-
ios due to domain gaps. To alleviate this limitation, some
works [6, 30, 31, 41, 48, 51] combine neural radiance fields
[27] with SMPL [23] to represent the human body, which
can be rendered to 2D images by differentiable rendering.
Currently, some works [7, 8, 19, 26, 35, 53] can quickly cre-
ate neural human radiance fields from sparse multi-view im-
ages without optimization from scratch. While these meth-
ods usually rely on accurate SMPL estimation which is not
always applicable in practical applications.

3. Method
We introduce an effective framework GM-NeRF for

novel view synthesis and 3D human reconstruction as il-
lustrated in Fig. 2. GM-NeRF learns generalizable model-
based neural radiance fields from calibrated multi-view im-
ages by introducing a parametric model SMPL as a geo-
metric prior, which can generalize to unseen identity and
unseen pose.

Given m calibrated multi-view images {Ik}mk=1 of a per-
son, we use Easymocap [11] to obtain the SMPL [23] pa-
rameters M(θ, β) of the person. We feed the multi-view
images into the encoder network E to extract multi-view
feature maps,

Hk = E(Ik), k = 1, 2, . . . ,m. (1)



Figure 2. The architecture of our method. Given m calibrated multi-view images and registered SMPL, we build the generalizable
model-based neural human radiance field. First, we utilize the image encoder to extract multi-view image features, which are used to
provide geometric and appearance information, respectively. In order to adequately exploit the geometric prior, we propose the visibility-
based attention mechanism to construct a structured geometric body embedding, which is further diffused to form a geometric feature
volume. For any spatial point x, we trilinearly interpolate the feature volume G to obtain the geometric code g(x). In addition, we also
propose geometry-guided attention to obtain the appearance code a(x,d) directly from the multi-view image features. We then feed the
geometric code g(x) and appearance code a(x,d) into the MLP network to build the neural feature field (f , σ) = F (g(x),a(x,d)).
Finally, we employ volume rendering and neural rendering to generate the novel view image.

For any 3D position p, we can project it onto the feature
map Hk according to the corresponding camera parameters,
which is defined as πk(·), then use bilinear interpolation
Ψ(·) to obtain the pixel-aligned feature hk(p) and pixel-
aligned color rk(p) as follows,

hk(p) = Ψ(Hk, πk(p)),

rk(p) = Ψ(Ik, πk(p)).
(2)

In order to adequately exploit the geometric prior, we pro-
pose the visibility-based attention mechanism to construct
a structured geometric body embedding, which is further
diffused to form a geometric feature volume (Sec. 3.1). Af-
terward, we trilinear interpolate each spatial point x in the
feature volume G to obtain the geometric code g(x). To
avoid the misalignment between the appearance code and
geometry code, we utilize the geometry code as a proxy and
then register the appearance code a(x,d) directly from the
multi-view image features with a novel geometry-guided
attention mechanism (Sec. 3.2). We then feed the geo-
metric code g(x) and appearance code a(x,d) into the
MLP network to build the neural feature field (f , σ) =
F (g(x),a(x,d)) followed by volume rendering and neu-
ral rendering for novel view image generation (Sec. 3.3).
To obtain high-quality results, we carefully design an opti-
mization objective including a novel normal regularization.
(Sec. 3.4) as well as an efficient training strategy (Sec. 3.5).

3.1. Structured Geometric Body Embedding

Different from neural radiance fields on general scenes,
we introduce a parametric body model to provide the ge-
ometric prior for constructing the neural human radiance
field, which can enhance generalizability under unseen
poses. In our experiments, we choose the SMPL [23] model
as the parametric model. The SMPL [23] model M(θ, β)

is a mesh with N = 6, 890 vertices {vi}Ni=1, where it is
mainly controlled by the pose parameter θ, and the shape
parameter β. NeuralBody [31] optimizes a set of structured
latent codes from scratch on vertices of the SMPL model
for each specific identity. However, not only does it fail to
represent a new identity but also has poor generalizability
on unseen poses. To address such limitation, we extract the
structured latent codes Z = {zi}Ni=1 from the multi-view
feature map Hk as a geometric embedding to represent ar-
bitrary identities. For vertex vi, we design a visibility-based
attention mechanism as shown in Fig. 2 to fuse multi-view
features.

Qg(vi) = F g
Q (ni)

Kg(vi) = F g
K({hk(vi)⊕ dk}mk=1)

Vg(vi) = F g
V ({hk(vi)}mk=1)

zi = F g (Att (Qg(vi),Kg(vi),Vg(vi)))

(3)

where⊕ is the concatenation operator, and ni is the normal
of the vertex vi. F g

Q, F g
K , F g

V denote the geometric linear



layers producing the query, key, and value matrices Qg(vi),
Kg(vi), Vg(vi), respectively. Att is the attention mecha-
nism proposed by [45]. F g is the geometric feed-forward
layer. The intuition of this visibility-based attention mecha-
nism is that the closer the input camera direction dk is to the
normal ni, the more the corresponding feature contributes.
As shown in Fig. 5, the visualization result demonstrates the
plausibility of this design.

Similar to NeuralBody [31], we use SparseConvNet [13]
D to diffuse the structured latent codes {zi}Ni=1 into the
nearby space to form a 3D feature volume G.

G = D({zi}Ni=1)

g(x) = Φ(x,G)
(4)

where Φ(·) is the trilinear interpolation operation, which is
applied to obtain the geometric code g(x) for any 3D posi-
tion x during volume rendering.

3.2. Multi-View Appearance Blending

Although the structured geometric body embedding pro-
vides a robust geometric prior, high-frequency appearance
details such as wrinkles and patterns are lost, due to the
low resolution and the minimally-clothed topology of the
parametric model. In practice, inaccurate SMPL estimation
will lead to the misalignment between the 3D geometry and
pixel space, which will cause blur and distortion when fus-
ing the geometry and pixel-aligned feature. To solve this
problem, we design a geometry-guided attention mecha-
nism as shown in Fig. 2, which utilizes the geometry code
as a proxy and then registers the appearance code a(x,d)
directly from the multi-view image features for any 3D po-
sition x and view direction d.

Qa(x) = F a
Q (g(x)⊕ d)

Ka(x) = F a
K({hk(x)⊕ dk}mk=1)

Va(x) = F a
V ({hk(x)⊕ rk(x)}mk=1)

a(x,d) = F a (Att (Qa(x),Ka(x),Va(x)))

(5)

where F a
Q, F a

K , F a
V denote the appearance layers producing

the query, key, and value matrices Qa(x), Ka(x), Va(x),
respectively. F a is the appearance feed-forward layer.

3.3. Differential Rendering

After we get the geometric code and appearance code of
any 3D point, we design a two-stage MLP network F (·) to
build the neural feature field.

(f , σ) = F (g(x),a(x,d)) (6)

Unlike classical NeRF [27], which regresses color c and
density σ, our decoder outputs the intermediate feature f
and density σ. However, the original volume rendering pro-
cess is memory-consuming, we use a combination of vol-
ume rendering and neural rendering to get the final image.

3D Volume Rendering. We use the same volume ren-
dering techniques as in NeRF [27] to render the neural ra-
diance field into a 2D image. Then the pixel colors are ob-
tained by accumulating the colors and densities along the
corresponding camera ray τ . In practice, the continuous in-
tegration is approximated by summation over sampled N
points {xi}Ni=1 between the near plane and the far plane
along the camera ray τ .

F(τ) =
N∑
i=1

αi (xi)
∏
j<i

(1− αj (xj)) f (xi)

M(τ) =

N∑
i=1

αi (xi)
∏
j<i

(1− αj (xj))

αi(x) = 1− exp (−σ(x)δi)

(7)

where δi = ∥xi+1 − xi∥2 is the distance between adjacent
sampling points. αi(x) is the alpha value for x. The inter-
mediate feature image IF ∈ RH

2 ×W
2 ×MF and the silhouette

image IM ∈ RH
2 ×W

2 ×1 is obtained by Eq. (7).
2D Neural Rendering. We utilize a 2D convolutional

network Gθ to convert the intermediate feature image IF ∈
RH

2 ×W
2 ×MF rendered by volume rendering into the final

synthesized image It ∈ RH×W×3.

It ←− Gθ (IF ) (8)

where θ is the parameters of the 2D neural rendering net-
work G, which means the rendering procedure is learnable.

3.4. Loss Functions

To stabilize the training procedure, we adopt the pixel-
wise L2 loss widely used in [8, 19, 54] to constrain the ren-
dered image It and the alpha image IM.

L = λr

∥∥∥Ĩt − It

∥∥∥2
2
+ λs

∥∥∥ĨM − IM

∥∥∥2
2

(9)

where Ĩt, ĨM are the ground-truth of the RGB image and
silhouette image, respectively and λr, λs are the weights.
Beyond that, we also introduce the following loss functions
to optimize the networks together,

Perceptual Loss . We use a perceptual loss [16] based
on the VGG Network [37]. It is more effective when the
size of the images is closer to the network input, while it is
memory intensive to render the whole image by volume ren-
dering. To address these limitations, we adapt both neural
rendering as well as partial gradient backpropagation.

Lp =
∑ 1

N j

∣∣∣pj (Ĩt)− pj (It)
∣∣∣ (10)

where pj is the activation function and N j is the number of
elements of the j-th layer in the pretrained VGG network.



Figure 3. Qualitative comparison with generalizable NeRFs. We input m = 4 multi-view images of unseen identity, and our method
produces a more photo-realistic novel view image compared to other state-of-the-art generalizable human NeRFs [8, 19, 26, 47]. The first
two rows are from Multi-Garment [4], the third row from THuman2.0 [55] and the last row from GeneBody [8].

Multi-Garment [4] THuman2.0 [55] ZJUMocap [31] GeneBody [8]

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
IBRNet [47] 28.44 0.924 0.0917 25.66 0.916 0.1033 25.25 0.876 0.2323 24.71 0.889 0.1364

NHP [19] 26.04 0.925 0.0701 26.99 0.935 0.0734 25.92 0.904 0.1623 22.75 0.872 0.1659
GNR [8] 28.61 0.937 0.0511 25.82 0.929 0.0605 25.39 0.903 0.1306 22.21 0.887 0.1254

KeypointNeRF [26] 28.36 0.938 0.0471 25.93 0.929 0.0607 25.85 0.910 0.1092 24.34 0.902 0.1236
Ours 30.18 0.947 0.0305 28.88 0.952 0.0335 26.74 0.919 0.0955 23.90 0.906 0.0865

Table 1. Quantitative comparisons with the generalizable NeRF methods. We evaluate the novel view synthesis performance on the
unseen identity of different datasets. Our method significantly outperforms the state-of-the-art methods.

Normal Regularization. Although NeRF [27] can pro-
duce realistic images, the geometric surfaces generated by
Marching Cubes [24] are extremely coarse and noisy. To
alleviate it, we introduce normal regularization to constrain
the normal among adjacent points.

Ln =
∑
xs∈S

∥n (xs)− n (xs + ϵ)∥2

n (xs) =
∇xsσ (xs)

∥∇xs
σ (xs)∥2

(11)

where S is the points set randomly sampled near the SMPL
mesh surface. n (xs) is the normal of the sampled point xs

and ϵ is a gaussian random noise with a variance of 0.1.

The final loss can be summarized as

Lfull = L+ λpLp + λnLn (12)

where λp and λn are the weights of the perceptual loss and
the normal regularization, respectively.

3.5. Efficient Training

During training, we select m multi-view images {Ik}mk=1

as inputs to build the generalizable model-based neural ra-
diance fields and synthesize the target image It with given
camera pose. It is memory-consuming to synthesize the
whole image at the same time by volume rendering, so we
only generate an image patch of the resolution Hp × Wp

sampled randomly from the whole target image, which



Figure 4. Qualitative results of novel pose synthesis on ZJUMocap [31] datasets. Fs denotes training from scratch, Ft indicates fine-
tuning the model after pretraining on Multi-Garment [4] dataset.

Novel View Synthesis Novel Pose Synthesis

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NB [31] 28.30 0.9462 0.0951 23.86 0.8971 0.1427

Ani-N [30] 26.19 0.9213 0.1399 23.38 0.8917 0.1594
A-NeRF [41] 27.43 0.9379 0.1019 22.40 0.8629 0.1991
ARAH [48] 28.51 0.9483 0.0813 24.63 0.9112 0.1070
Ours (Fs) 27.56 0.9314 0.0904 26.68 0.9241 0.0984
Ours (Ft) 28.45 0.9419 0.0733 27.63 0.9361 0.0798

Table 2. Quantitative comparisons with case-specific optimiza-
tion methods on ZJUMocap dataset.

means we only need to synthesize the half intermediate fea-
ture image of the resolution Hp

2 ×
Wp

2 by volume render-
ing. Meanwhile, since the perceptual loss requires a large
enough image as input, we use partial gradient backprop-
agation introduced in CIPS-3D [58] to further reduce the
memory cost caused by volume rendering. Specifically, we
randomly choose np camera rays to participate in the gradi-
ent calculation, and the remaining rays Hp

2 ×
Wp

2 − np are
not involved in gradient backpropagation.

4. Experiments

4.1. Datasets

We conduct experiments on two synthesized datasets
Thuman2.0 [55] and Multi-garment [4] and real-world
datasets Genebody [8] and ZJUMocap [31] for the gener-
alizable scene task. The Thuman2.0 dataset contains 525
human scan meshes, of which we selected 400 for training
and the remaining 125 for testing. For the Multi-garment
dataset, we used 70 meshes for training and 25 meshes for
evaluation. For each scanned mesh, we rendered it into
66 multi-view images of resolution 1024 × 1024. Specif-
ically, we first place each scanned mesh into the center of a
unit sphere at a distance of 5.4m, with the camera orienta-
tion always pointing towards the center of the sphere. We

Figure 5. The visualization of visibility-based attention confi-
dence. We visualize the contribution of different input views to
the SMPL vertices. (Red indicates high confidence, while blue
represents low confidence.)

move the camera around the sphere, sample a yaw angle
from 0◦ to 60◦ with an interval of 30◦, and sample a roll
angle from 0◦ to 360◦ with an interval of 30◦. The Gene-
body consists of 50 sequences at a 48 synchronized cam-
eras setting, each of which has 150 frames. Specifically, we
choose 40 sequences for training and another 10 sequences
for testing. For ZJUMocap, which captures 10 dynamic hu-
man sequences with 21 synchronized cameras, we use 7 se-
quences for training and the rest 3 sequences for testing. To
compare with the case-specific methods, we conduct exper-
iments about novel view synthesis and novel pose synthesis
on ZJUMocap. Following the evaluation protocols used in
NB [31], we select 4 fixed view videos for training.

4.2. Evaluation Metrics

We evaluate our method with state-of-the-art generaliz-
able or per-scene optimized methods to verify the superior-
ity of our performance. We formulate comparative experi-
ments on both geometric reconstruction and novel view syn-
thesis. For quantitative comparison, we adopt peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM),
and learned perceptual image patch similarity (LPIPS [56])
to evaluate the similarity between the rendered image and
the ground-truth. Meanwhile, we also adopt chamfer dis-
tance (Chamfer) and point-to-surface distance (P2S) for ge-
ometric quality evaluation.



Figure 6. Qualitative results of ablation studies on Multi-Garment dataset.

Model PSNR↑ SSIM↑ LPIPS↓
Base 25.22 0.895 0.1048

Base+MAB 27.08 0.915 0.0611
Base+PL 27.75 0.913 0.0673

Base+MAB+PL 28.72 0.929 0.0423
Base+MAB+NR 30.03 0.940 0.0562

Full Model 30.18 0.947 0.0305

Table 3. Quantitative results of ablation studies on the Multi-
garment. Impact of the different components in our method.

4.3. Implementation Details

In our experiments, we choose m = 4 multi-view images{
Ik ∈ R512×512×3

}m

k=1
as input to synthesize the target im-

age It ∈ R512×512×3. During training, the input multi-view
images are selected randomly, while selected uniformly sur-
rounding the person (i.e., the front, back, left, and right
views) for evaluation. The resolution of the patch image
during training is Hp = Wp = 224. The SMPL parame-
ters are obtained using EasyMocap [31]. The size of our 3D
feature volume G is 2243. For partial gradient backpropa-
gation, we randomly sample np = 4, 096 camera rays from
the target image patch to improve memory efficiency. We
then uniformly query N = 64 samples from our feature
volume along the camera ray. We train our network end-to-
end by using the Adam [17] optimizer, and the base learning
rate is 5× 10−4 which decays exponentially along with the
optimization. We train 200, 000 iterations on two Nvidia
RTX3090 GPUs with a batch size of 4. The loss weights
λr = 1, λs = 0.1, λp = 0.01, λn = 0.01.

4.4. Evaluation.

Comparison with generalizable NeRFs. We com-
pare our method with state-of-the-art generalizable methods
IBRNet [47], NHP [19], GNR [8] and KeypointNeRF [26].
We retrain all aforementioned networks with the official
training protocols on GeneBody [8], Multi-Garment [4],

Figure 7. Qualitative results of different multi-view fusion
mechanisms.

Model PSNR↑ SSIM↑ LPIPS↓
Ours with AvgPool 27.81 0.9317 0.05059
Ours with IBRAtt 28.50 0.9345 0.03413

Ours 28.88 0.9518 0.03349

Table 4. Quantitative results of different multi-view fusion
mechanisms on the THuman2.0 dataset. AvgPool is used in
PIFu [33] and PixelNeRF [54]. IBRAtt is proposed by IBRNet.

and THuman2.0 [55] datasets. Specially, we also use m = 3
views as input on ZJUMocap [31] dataset following the
evaluation protocol used in KeypointNeRF. The result can
be seen in Tab. 1 and Fig. 3, which shows our method gener-
alizes to unseen identities well and outperforms the methods
compared. IBRNet, which learns a general view interpola-
tion function to synthesize the novel view from a sparse set
of nearby views, is able to render high-fidelity images for
views close to the input views while having very poor gen-
eralization for views far from the input views. Our method
has better generalization of novel view synthesis and gener-
ates higher quality geometry due to the use of the geometry
prior SMPL. KeypointNeRF utilizes sparse 3D keypoints
as pose priors and has weak expressiveness for unseen poses
when the pose diversity in the training set is insufficient. In
our experiment, we choose the 3D joints of SMPL as the
input of KeypointNeRF. Compared to NHP and GNR, al-
though we both employ SMPL as the geometry prior and
suffer from inaccurate SMPL estimation, our method can
alleviate the ambiguity of misalignment between geometry
and pixel-aligned appearance. Meanwhile, benefiting from



Figure 8. Visualization results of 3D geometry reconstruction
compared with different methods.

Multi-Garment [4] THuman2.0 [55]

Model Chamfer↓ P2S↓ Chamfer↓ P2S↓
GNR [8] 1.3570 1.8981 1.7899 2.5932
NHP [19] 1.4646 2.2438 1.6027 2.3921

Ours 0.7175 0.6919 0.7444 0.6600
Ours(Ft) 0.3721 0.3676 0.5172 0.4506

Table 5. Quantitative comparisons of 3D geometry reconstruc-
tion. Our method consistently outperforms other methods, captur-
ing more local details after fine-tuning.

perceptual loss, our generated images have more photo-
realistic local details. For 3d reconstruction, the mesh sur-
face extracted by Marching Cubes is smoother and more
precise due to normal regularization compared with others
as shown in Fig. 8 and Tab. 5.

Comparison with case-specific Methods. We also
compare with per-scene optimization methods NB [31],
Ani-NeRF [30], A-NeRF [41], ARAH [48]. NB optimizes
a set of structured latent codes associated with SMPL ver-
tices, which are diffused into the observation space by us-
ing SparseConvNet. Since the 3D convolution in SparseC-
onvNet is not rotation-invariant, NB has poor generaliza-
tion on out-of-distribution poses. Ani-NeRF learns a back-
ward LBS network to warp the observation space into the
canonical space, which is not sufficient to model non-rigid
deformations in complex poses. A-NeRF uses skeleton-
relative embedding to model pose dependence deformation,
which requires seeing the subjects from all views in vary-
ing poses. ARAH uses iterative root-finding for simulta-
neous ray-surface intersection search and correspondence
search, which generalizes well to unseen poses. As shown
in Tab 2, the performance of novel view synthesis is com-
parable with these methods, and it is reasonable since our
network has more parameters(13.6M) and struggles with
overfitting when the training data is so limited without any
pretraining. After pretraining on the Multi-Garment and
finetuning 5, 000 steps on ZJUMocap, our results achieve
a noticeable improvement. Anyway, our method has supe-
rior generalization on novel pose synthesis, which is a more

challenging task. Our results are more photorealistic and
preserve more details like wrinkles and patterns as shown
in Fig 4, which benefit from the sparse multi-view input.

4.5. Ablation studies

The baseline (Base) is an extended version of NB to ex-
press arbitrary identities as our baseline. Specifically, our
structured latent codes are obtained by fusing multi-view
input, rather than optimizing from scratch for a specific
identity. Beyond that, we introduce multi-view appearance
blending (MAB), perception loss (PL), and neural render-
ing (NR). The experimental results prove the effectiveness
of each component as shown in Tab. 3 and Fig. 6. In ad-
dition, we explore the effects of different multi-view fusion
mechanisms, and the experiments prove that our proposed
visibility-based attention and geometry-guided attention are
more effective than AvgPool [33, 54] and IBRAtt [47].

5. Limitations
There are some limitations of our method that need

to be improved: i) Due to the minimal-clothed topology
of SMPL, our model struggles to express extremely loose
clothes and accessories. ii) When the testing pose is out-
of-distribution, our method may produce some artifacts in
results since 3D convolution in SparseConvNet [13] is not
rotation-invariant. iii) As the target view moves further
away from the input views, artifacts tend to emerge in the
unobserved areas.

6. Conclusion
In this paper, we propose an effective framework to build

generalizable model-based neural radiance fields (GM-
NeRF) from sparse calibrated multi-view images of arbi-
trary performers. To improve generalization on novel poses
and identities, we introduce SMPL as the structured geo-
metric body embedding. However, inaccurate estimations
of SMPL have a negative impact on the reconstruction
results. To address this, we propose a novel geometry-
guided multi-view attention mechanism that can effectively
alleviate the misalignment between SMPL geometric prior
feature and pixel-aligned feature. Meanwhile, we pro-
pose strategies such as neural rendering and partial gradient
backpropagation to efficiently train our network using per-
ceptual loss. Extensive experiments show that our method
outperforms concurrent works.
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Tang, and Shunsuke Saito. Keypointnerf: Generalizing
image-based volumetric avatars using relative spatial encod-
ing of keypoints. CoRR, abs/2205.04992, 2022. 1, 2, 5, 7

[27] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, pages 405–421. Springer, 2020. 2, 4, 5

[28] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation. In
CVPR, pages 165–174. Computer Vision Foundation / IEEE,
2019. 2

[29] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In CVPR, pages 10975–
10985. Computer Vision Foundation / IEEE, 2019. 2

[30] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In ICCV, pages 14294–14303. IEEE, 2021. 2, 6, 8

[31] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR,
pages 9054–9063, 2021. 1, 2, 3, 4, 5, 6, 7, 8

[32] Sergey Prokudin, Michael J. Black, and Javier Romero. Sm-
plpix: Neural avatars from 3d human models. In WACV,
pages 1809–1818. IEEE, 2021. 1

[33] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Hao Li, and Angjoo Kanazawa. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, pages 2304–2314. IEEE, 2019. 2, 7, 8

[34] Shunsuke Saito, Tomas Simon, Jason M. Saragih, and Han-
byul Joo. Pifuhd: Multi-level pixel-aligned implicit function
for high-resolution 3d human digitization. In CVPR, pages
81–90. Computer Vision Foundation / IEEE, 2020. 2

[35] Ruizhi Shao, Hongwen Zhang, He Zhang, Mingjia Chen,
Yanpei Cao, Tao Yu, and Yebin Liu. Doublefield: Bridging
the neural surface and radiance fields for high-fidelity human
reconstruction and rendering. In CVPR, pages 15851–15861.
IEEE, 2022. 2

[36] Aliaksandra Shysheya, Egor Zakharov, Kara-Ali Aliev,
Renat Bashirov, Egor Burkov, Karim Iskakov, Aleksei
Ivakhnenko, Yury Malkov, Igor Pasechnik, Dmitry Ulyanov,
Alexander Vakhitov, and Victor S. Lempitsky. Textured neu-
ral avatars. In CVPR, pages 2387–2397. Computer Vision
Foundation / IEEE, 2019. 1

[37] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
Yoshua Bengio and Yann LeCun, editors, ICLR, 2015. 4

[38] Vincent Sitzmann, Julien N. P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation func-
tions. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
NeurIPS, 2020. 2

[39] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
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