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Abstract. Due to the ubiquity of smartphones, it is popular to take
photos of one’s self, or “selfies.” Such photos are convenient to take, because
they do not require specialized equipment or a third-party photographer.
However, in selfies, constraints such as human arm length often make the
body pose look unnatural. To address this issue, we introduce unselfie,
a novel photographic transformation that automatically translates a
selfie into a neutral-pose portrait. To achieve this, we first collect an
unpaired dataset, and introduce a way to synthesize paired training data
for self-supervised learning. Then, to unselfie a photo, we propose a new
three-stage pipeline, where we first find a target neutral pose, inpaint
the body texture, and finally refine and composite the person on the
background. To obtain a suitable target neutral pose, we propose a novel
nearest pose search module that makes the reposing task easier and
enables the generation of multiple neutral-pose results among which users
can choose the best one they like. Qualitative and quantitative evaluations
show the superiority of our pipeline over alternatives.

Keywords: Image Editing, Selfie, Human Pose Transfer.

1 Introduction

Smartphone cameras have democratized photography by allowing casual users to
take high-quality photos. However, there still remains a tension between the ease
of capture and the photograph’s quality. This is particularly apparent in the case
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Fig. 1: We automatically unselfie selfie photos into neutral-pose portraits.
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of personal portraits. On one hand, it is easy to take a photo of oneself (a selfie)
by using the front camera of a smartphone. On the other hand, one can usually
take a much higher-quality photograph by relying on an extra photographer, or
equipment such as a tripod or selfie stick. While less convenient, these avoid the
compositional problem that tends to occur in selfies: an unnatural body pose.

In this paper, we introduce a new photographic transformation that we call
unselfie. This transformation aims to make selfie photos look like a well-composed
portrait, captured by a third party photographer, showing a neutral body pose
with relaxed arms, shoulders and torso. We call this desired result a “neutral-pose
portrait." The unselfie transform moves any raised arms downward, adjusts the
pose of the shoulder and torso, tweaks the details of the clothing and then fills in
any exposed background regions (see Figure 1).

There are three main challenges that we need to tackle in order to be able
to unselfie photos: (1) Paired (selfie, neutral-pose portrait) training data do not
exist, so we need to train a model without such data; (2) The same selfie pose
can reasonably correspond to multiple plausible neutral poses, so we need to
be able to handle this multiplicity; (3) Changing the pose creates holes in the
background, so we need to fill in the holes while maintaining a smooth transition
between the background and the human body.

We first tried out several previous methods to see if they could address
challenge (1). We collected separate sets of selfie and neutral-pose portraits
and used the unsupervised approach CycleGAN [64] for unpaired translation.
CycleGAN excels at appearance-level translation that modifies textures and
colors, but cannot perform large geometric transformations which are often
needed for reposing the complex human body. It also produces unnatural poses
with artifacts that result in more noticeable artifacts later in our pipeline. We
also tried unsupervised person generation approaches [33,11]. Though better than
CycleGAN, these are not designed for our Unselfie task and produce lower quality
results than seen in their papers. As shown in our experiments, these methods
result in noticeable artifacts on the generated person images, and texture details
are missing because appearance information is compressed heavily.

Due to these reasons, we instead propose to synthesize (selfie, neutral-pose
portrait) pairs and use a self-supervised learning approach. In particular, we
propose a way to synthesize paired selfie images from neutral-pose portraits by
using a non-parametric nearest pose search module to retrieve the nearest selfie
pose given a neutral-pose portrait, and then synthesize a corresponding selfie. We
also adopt a nearest pose search module during inference. Given an input selfie
pose, we retrieve the best matching neutral poses, which we use to synthesize
the final portraits. This addresses challenge (2) by enabling diverse outputs to
be synthesized and allowing users to choose among them.

The synthesized paired data mentioned above can be directly used to train a
supervised person image generation network like [34,51,65], but there still exist
noticeable artifacts in the results as shown in our experiments. These methods
are sensitive to the pixel-level domain gap between our synthetic paired training
data and the real selfies testing data (see Fig. 3). Inspired by [15], we use the
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Fig. 2: Our three-stage pipeline. Based on the input selfie Iin, we extract its
pose information using DensePose [2]. We perform nearest neighbour search on
the pose representation to find the target neutral pose Ptgt that has the most
similar pose configuration in the upper torso region. Using DensePose, we map
the pixels in the input selfie to the visible regions of the target pose and then
use coordinate-based inpainting [15] to synthesize a coarse human body. We then
use a composition step to refine the coarse result by adding more details and
composite it into the original background.

coordinate-based inpainting method to inpaint the body texture in UV space. This
space is mostly invariant to the original body pose, and is therefore more robust
to imperfections in the synthesized data. Additionally, the coordinate-based
inpainting method can reuse visible pixels and thus give sharper results.

To address challenge (3), we adopt a gated convolutional layer [60] based
composition network to jointly refine the body appearance, fill the background
holes, and maintain smooth transitions between the human body and background.

Overall, to address the unselfie task, we propose a three-stage pipeline shown
in Fig. 2: we first search for a nearest neutral pose in a database, then perform
coordinate-based inpainting of the body texture, and finally use a composition
module to refine the result and composite it on the background. We conducted
several experiments and compared our method with alternatives to demonstrate
the effectiveness of our pipeline.

To the best of our knowledge, this work is the first to target the problem of
selfie to neutral-pose portrait translation, which could be a useful and popular
application among casual photographers. Our contributions include: 1) We collect
a new dataset of unpaired selfies and neutral-pose portraits and introduce a way
to synthesize paired training data for self-supervised learning; 2) We introduce a
three-stage pipeline to translate selfies into neutral-pose portraits; 3) We propose
a novel nearest pose search module to obtain suitable multi-modal target neutral
poses; 4) We design an all-in-one composition module to refine the foreground,
complete the background, and compose them together seamlessly.

2 Related work

Image Generation and Translation. Generative models, such as VAEs [23]
and GANs [14,46,35,3,6,22] can synthesize realistic-looking images from noise. To
allow more control during the generation process, much research has been devoted
to conditional image generation, with class labels [38], attributes [8], text [62,49],
key-points [48,33] and images [21,64] as conditioning signals. Image-to-image
translation networks are conditioned on images, such as semantic segmentation
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maps, edge maps and RGB images [21]. To alleviate the need of collecting paired
data, researchers have introduced unsupervised methods based on the ideas of
cycle-consistency [64] and shared latent space [29]. Subsequent works [25,20,32]
further extended the unsupervised approach to solve multi-modal image-to-
image translation problems by disentangling content and style representations.
These methods mainly focus on appearance manipulation. Recently, research
efforts have also been extended to modify the underlying geometry in image
translation tasks [54,45]. In general, unsupervised image manipulation is quite
challenging [27], especially if the goal is to modify the underlying geometry.

Image Completion. The goal of image completion is to fill in missing regions of
an image. Applications of image completion include image inpainting and image
out-painting. Traditional patch-based texture synthesis approaches [4,57,9,19]
work well for images containing simple and repetitive structures, but may fail
to handle images of complex scenes. To tackle this problem, modern approaches
apply deep learning for image completion due to its ability to gain semantic
understanding of the image content [42,59,58,40,60]. One of the first deep learning
methods for image inpainting is context encoder [42], which uses an encoder-
decoder architecture. In order to achieve better results, some prior works apply
the PatchMatch idea [4] at the feature level, such as Contextual Attention [59]
and ShiftNet [58]. Recently, Yu et al . [60] introduce a gated convolutional layer,
which learns a dynamic feature gating mechanism for each channel and each
spatial location. In our framework, we also use the gated convolutional layer [60]
in both the coordinate-based inpainting network and the composition network to
fill in holes in the UV map and the background.

Person Image Generation. Person image generation is a challenging task,
as human bodies have complex non-rigid structures with many degrees of free-
dom [39], Previous works in this space usually generate person images by condi-
tioning on these structures. Ma et al . [34] propose to condition on image and pose
keypoints to transfer the human pose. [24] and [10] generate clothed person by con-
ditioning on fine-grained body and clothing segmentation. Recent works [37,53]
also extend the conditions to attributes. To model the correspondences between
two human poses explicitly, recent works introduce flow-based techniques which
improve the appearance transfer result quality significantly [51,65,41,15,16,30,50].
Siarohin et al . [51] propose deformable skip-connections to warp the feature
maps with affine transformations. Grigorev et al . [15] propose to inpaint the
body texture in the UV space which is mostly invariant to the pose in the image
space. Although these methods achieve good results, they need paired training
data, i.e. two images containing the same individual in two different body poses,
which may be difficult to collect in many applications. To address this, several
unpaired methods have been proposed [33,11,43]. [33] and [11] propose to decom-
pose a person image into different factors which are then used to reconstruct the
original image. Other works also adopt human parsing algorithms to help out
on the difficult unpaired setting [47,52]. Raj et al . [47] generate training pairs
from a single image via data augmentation. Inspired by [47], we synthesize selfie
data from neutral-pose portrait data to construct paired training data. These
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human synthesis approaches focus on generating realistic human appearance in a
relatively simple background environment (i.e. fashion or surveillance datasets)
given a target pose. Our work on the other hand handles selfie photos captured in
the wild that contain a wide variety of backgrounds, lighting conditions, identities
and poses. Compared to fashion photos, the background pixels in selfies are of
greater importance.

3 Our Method

Our goal is to convert a selfie Iin into a neutral-pose portrait Iout as shown in
Fig. 2. We collect separate sets of selfie and portrait photos and synthesize paired
training data for self-supervised learning (Sect.3.1). Due to the complexity of the
problem, we solve it in three stages. In the first stage, we use a non-parametric
nearest pose search module (Sect.3.2) to find the target neutral pose Ptgt that
closely matches the pose in the upper torso region of the selfie. We then map the
pixels in the selfie to regions of the target pose based on the correspondences
between the two pose representations. This design makes the remaining problem
easier, since most of the pixels can be directly borrowed from the input selfie
and thus fewer pixels need to be modified by the remaining steps. In the second
stage, inspired by the previous work [15], we train a coordinate-based inpainting
model to synthesize the coarse appearance of the human body (Sect.3.3). In the
final stage, we train a composition model to synthesize details and fix artifacts
in the body region caused by pose changes, fill in holes in the background, and
seamlessly compose the synthesized body onto the original photo (Sect.3.4).

We use DensePose [2] in all three stages of our unselfie pipeline. Unlike
keypoint based representations [7], which predict a limited amount of pose
information described by sparse keypoints, DensePose provides a dense UV-map
for the entire visible human body. The UV-map is an ideal pose representation
for our purposes, because it provides body shape and orientation information,
which are useful for the pose search module. Color values in UV space are also
relatively invariant to the person’s pose, so this also enables the coordinate-based
inpainting step to produce sharp results.

3.1 Datasets

We are not aware of any datasets that contain selfie photos and their corresponding
portrait photos taken at the exact same place and time. However, there are many
unpaired selfies and neutral-pose portraits online.
Unpaired selfies and neutral-pose portraits. We collect 23169 photos of
people in frontal and neutral poses from the following public datasets: DeepFash-
ion [31], DeepFashion2 [12], and ATR [26]. We apply the DensePose algorithm
to extract the pose information from all the images. The extracted DensePose
representations form a neutral pose database {P i

neutral}. Because many images
in DeepFashion dataset have clean backgrounds, they are not diverse enough for
our composition network to learn proper background inpainting. Therefore, we
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Fig. 3: Synthesized (portrait, selfie) pairs in image space. Given a neutral-pose
portrait Itgt, we use DensePose to extract its pose Ptgt. We perform nearest
neighbour search to find the closest pose from the selfie pose database. The selfie
image Isrc is synthesized from pixels in Itgt by the correspondence between Ptgt

and Psrc. The displayed Itgt and Ptgt are cropped due to alignment (Sect. 3.2)

Ground truth portrait
texture-map Ttgt

Synthesized selfie
coordinate-map Csrc

Synthesized selfie
texture-map Tsrc

Fig. 4: Synthesized (portrait, selfie) pairs in UV space to train our coordinate-
based inpainting network.

apply a state-of-the-art matting technique [56] to extract the foreground humans
and paste them into random background images to increase the data diversity.

We collect 4614 selfie photos from the Internet using the following strategy.
We first search with keywords like “selfie girl,” “selfie boy,” etc. Many photos
returned by the search engines contain cellphones. These are not the selfies we
desire but are third-person view photos of someone taking selfies. Since Mask
R-CNN [17] is pretrained on the COCO dataset [28], which contains person and
cell phone classes, we use it to select photos that contain a single person without
any cell phones. We then eliminate photos that have disconnected body parts or
have any of the frontal upper body parts missing in the DensePose representation.
We also use this strategy to create the neutral-pose portrait dataset. Finally,
we manually clean up the remaining data in case any of the previous filters fail.
We create a 4114/500 split for training and testing. We denote the DensePose
representation of selfie photos as {P i

selfie}.
Synthesized paired training data. To allow self-supervised training, based
on the collected neutral-pose portraits, we synthesize their corresponding selfie
data using DensePose. As shown in Fig. 3, given a neutral pose Ptgt, we first
search for a selfie pose Psrc from {P i

selfie} that matches the input neutral pose
the best in the upper torso region. Through DensePose correspondences, we
map the portrait image pixels to the nearest selfie pose (see Sect. 3.2 for more
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Fig. 5: Nearest pose search module. The detected selfie DensePose Pin is first
aligned so that the two shoulder points are centered in the image Psrc. Then we
perform nearest neighbour search to find a target pose Ptgt from the neutral pose
database that closely matches the input selfie pose in the upper torso region.

details). Due to the pose change and self-occlusion, the synthesized selfie might
contain holes caused by mistakes of DensePose or by pixels visible in the selfie
but not visible in the original portrait such as the armpits or the backside of arms.
Though not perfect, these paired images can be used to train supervised human
synthesis models like [34,51,65]. However, the results have noticeable artifacts as
shown in our experiments in Sect. 4.1.

Instead of using the synthetic paired images to synthesize pixels directly, we
convert them into the UV space (see Fig. 4) and perform texture inpainting in
the UV coordinate space by building on [15]. In particular, we first obtain ground
truth portrait texture map Ttgt from Itgt with DensePose mapping. Then, we
obtain the selfie coordinate map Csrc from the nearest selfie pose Psrc masked
by the visible region of Ttgt. Finally from Csrc, we sample the pixels from Ttgt to
synthesize the selfie texture map Tsrc. Csrc and Tsrc are used as input to train
the coordinate-based inpainting model (see Sect.3.3).

3.2 Nearest Pose Search

Because our goal is to turn a selfie into a neutral-pose portrait, it is important
to define what we desire for the target neutral pose. Motivated by the success
of retrieval-based image synthesis [44], we propose a retrieval-based approach
where given a selfie pose at testing time, we perform non-parametric nearest pose
search to find the neutral poses in the {P i

neutral} database that match the input
selfie pose the best. Compared to pixel-level pose translation using approaches
like CycleGAN [64], our approach has several advantages: (1) It is simpler and
more explainable since no training is needed; (2) the retrieved target poses are
guaranteed to be natural since they come from real photos; (3) we can generate
multiple unselfie results by choosing the top-K most similar poses as the target
poses and we can allow users to choose their favorite result; (4) the retrieved
poses are similar to the input pose which makes pose correction easier since fewer
pixels need to be modified.

During inference, given an input selfie, we search for the k-nearest target
neutral poses. At training time, we reverse the search direction: given a target
neutral pose, we search for a matching selfie. This allows us to synthesize synthetic
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data, which are used to self-supervise the inpainting and composition networks.
The procedure is otherwise the same at both training and inference time.

In the remainder of this subsection, we describe the details of our pose search
module. As shown in Fig. 5, we first align the input selfie pose Pin by putting
two selected shoulder points in the center of the image to obtain the source pose
Psrc. All neutral poses are also aligned in the same way. We calculate the pose
similarity in the frontal torso region excluding the head, since the later stages of
our pipeline keep the head region intact and only correct the body pose. The
DensePose representation P is an IUV map which contains three channels. The
P I channel contains indices of body parts to which pixels belong, and the PUV

channels contain the UV coordinates.
Based on P I and PUV , we propose a two-step search strategy to calculate pose

similarity. First, we search for suitable target poses based on global information
such as body shape and position. To determine the global similarity between two
poses, we use the following equation:

dI(P1, P2) =
∑

x∈R1∪R2

1(P I
1 (x) 6= P I

2 (x)), (1)

where R refers to the front torso regions of the body. We iterate over all pixels in
both torso regions and count the number of pixels that belong to different body
parts in the two poses. If there is large body part index mismatch in the torso
regions, the two poses are dissimilar at a global level.

Among the top-K pose candidates selected based on dI , we further improve
the ranking by leveraging local pose information given by the UV coordinates. In
particular, for pixels belonging to torso regions in both poses, we calculate the
sum of the distances of their UV coordinates:

dUV (P1, P2) =
∑

x∈R1∩R2

‖PUV
1 (x)− PUV

2 (x)‖2. (2)

3.3 Coordinate-based Inpainting

Inspired by self-supervised image inpainting work [42,60] and human synthesis
work [15], we learn to reuse the visible body pixels to fill in the invisible body
parts. As illustrated in Fig. 6 left, we first use an Image-to-UV (I2UV) mapping
to translate pose Psrc and the color image Isrc from the image domain to the UV
domain. Defined in the UV domain, Csrc stores the associated {x, y} coordinates
of pixels in the original image space. Likewise in the UV domain, Tsrc contains
the RGB colors of the associated pixels in the original image Isrc: these are
looked up by using bilinear sampling via Tsrc = Isrc(Csrc).

After the I2UV mapping, we use an inpainting neural networkG1 to inpaint the
coordinate-map Csrc. We concatenate Csrc and Tsrc as input to the network. The
network outputs the inpainted coordinate-map CG1 = G1(Csrc, Tsrc). We then
perform bilinear sampling to obtain the inpainted texture-map TG1

= Isrc(CG1
).

Finally, we map CG1
and TG1

back to the image space with UV-to-Image
(UV2I) mapping using the bilinear sampling operations E = CG1

(Ptgt), IG1
=
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Fig. 6: Left: coordinate-based inpainting stage. Right: composition stage.

TG1
(Ptgt). To train G1, we use three loss functions, identity loss LG1

idt, reconstruc-
tion loss LG1

1 and perceptual loss LG1

P [63] as follows,

LG1

idt =E
[
‖CG1 − Csrc‖22Vsrc

]
, (3)

LG1
1 =E

[
‖TG1 − Ttgt‖1Vtgt

]
, (4)

LG1

P =E
[
‖φ(TG1)− φ(Ttgt)‖22Vtgt

]
, (5)

Vsrc and Vtgt are binary masks that select the non-empty regions in the coordinate
map Csrc and Ttgt, respectively. Ttgt is the ground truth texture mapped from
image domain to UV domain (Fig. 4 left), that is, Ttgt = I2UV (Itgt). The identity
loss encourages the existing coordinates to stay unchanged while the network
synthesizes coordinates elsewhere. The reconstruction loss and perceptual loss
are performed in the pixel space instead of the coordinate space and use the
ground truth image for supervision. The overall loss for G1 is

min
G1

LG1 = LG1
1 + λ1L

G1

P + λ2L
G1

idt, (6)

3.4 Composition

The advantage of doing inpainting in the coordinate space is that the network can
copy and paste original pixels to fill in missing regions based on body symmetry
and therefore the synthesized pixels tend to look sharp. However, in some cases,
a small number of visible pixels get copied into a much larger region resulting in
flat and unrealistic appearance. In addition, when arms are moved down, holes
will appear in the background due to dis-occlusion.

To address these problems, we use an all-in-one composition network to add
details and fix artifacts in the body region and fill in the gaps between the
body and the background by synthesizing a natural transition. As illustrated
in Fig. 6 right, we use a U-net architecture equipped with gated convolutional
layers [60] for G2. The U-net architecture helps preserve the high resolution
features through skip-connections. The gated convolutional layer improves the
inpainting result quality when dealing with holes of arbitrary shape. To keep the
body appearance more consistent, we also use deformable skip connections [51,15]
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to propagate the appearance information from the source image Isrc to the
result despite large changes in poses. The network synthesizes missing foreground
pixels, fills in background holes and also produces an alpha mask AG2 . AG2

is used to blend the synthesized pixels IG2 into the background image Ibg, i.e.
Iout = IG2

AG2
+ Ibg(1−AG2

). We add the original head and neck regions into
Ibg so that after blending the head regions will remain untouched.

To train G2, we apply reconstruction loss LG2
1 , perceptual loss LG2

P [63], alpha
loss LG2

A and adversarial loss LG2,D
adv ,

LG2
1 = E

[
‖Iout − Itgt‖1(1 +H)

]
, (7)

LG2

P = E
[
‖φ(Iout)− φ(Itgt)‖22(1 +H)

]
, (8)

LG2

A = E
[
‖AG2 −H‖1

]
, (9)

min
G2

max
D

LG2,D
adv = E

[
(D(Itgt))

2(1 +H)
]

+ E
[
(D(Iout)− 1)2(1 +H)

]
, (10)

where Itgt denotes the ground truth neutral-pose portrait. H ∈ [0, 1] is a binary
spatial mask to encourage the network to focus more on synthesizing foreground
and filling dis-occluded holes and the details are explained later. When applied
to different spatial size, H will be resized to the corresponding spatial size by
nearest-neighbor scaling accordingly. As to the adversarial learning, we use the
same residual discriminator as that of [65]. The overall loss for G2 is

min
G2

max
D

LG2 = λ3L
G2
1 + λ4L

G2

P + λ5L
G2,D
adv + LG2

A . (11)

There is a big domain gap between the training and testing data. During
testing, arms in real selfies are moved downward revealing a large hole in the
background. During training, we also mimic the dis-occluded background holes.
In particular, we calculate a binary mask H = Hselfie ∪Hneutral, which is also
used in Eq. 7 to 10. Hselfie and Hneutral, which are estimated using an off-the-
shelf DeepMatting model [56] and binarized with threshold 0.1, denote the body
regions from the selfie and the neutral-pose portrait, respectively. The synthesized
hole mask H is then applied to Ibg to mimic dis-occluded background holes.

4 Experiments

We compare our approach with several prior work through a qualitative evaluation,
a user study and a quantitative evaluation1. Note that none of the previous
approaches address exactly our unselfie problem, so we cannot compare our
approach with previous work using their datasets and result quality for previous
work on our dataset is worse than the result quality in those papers. We present
ablation studies to validate the effectiveness of different algorithm choices. Finally,
we discuss the limitations and future work. If not otherwise specified, we use
1 More results and implementation details are reported in the supplementary materials.
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Fig. 7: Comparisons with state-of-the-art methods. Please zoom in to see details.

the top-1 retrieved neutral pose as target pose. Note that there may be JPEG
compression artifacts in the input selfies.

4.1 Comparisons with existing methods

Since we defined a brand new unselfie application, there is no prior work to
compare to that addresses the exact same problem. Nevertheless, we introduce
some modifications to two state-of-the-art human synthesis methods, DPIG [33]
and PATN [65], so that we can compare to them directly in our new application
setting. Note that these methods synthesize pixels based on a pre-specified target
pose. To make their approaches work, we need to perform our proposed nearest
pose search module to calculate Ptgt and then use their approaches to synthesize
the final pixels. DPIG is a key-points based unsupervised approach. For fair
comparison, we replace their key-points with the DensePose representation. We
also made various other improvements for it to produce comparable results
to ours (see supplementary material). PATN is a key-points based supervised
method, so we use our synthesized paired images for self-supervised training by
using DensePose IUV map as the input pose representation and feeding Isrc, Ibg
as input to their model. In the supplementary material, we also compare our
approach with another keypoint-based unsupervised approach VUNET [11]. Due
to low result quality and space limitations, we do not show those results here.
Qualitative evaluation. Fig. 7 shows that our method synthesizes more photo-
realistic body and background appearance compared to prior art. We manually
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picked the best target pose out of results using our top-5 retrieved poses. The
multi-modal results are reported in the supplementary material. In the top row,
the short-sleeved clothing style is better preserved. In the second row, the stripe
pattern is better preserved, and the synthesized arms are sharper. In the bottom
two rows, our method synthesizes better clothing and background details and
produces more natural transitions between foreground and background. The
reasons that our method outperforms the baselines are: 1) unsupervised methods,
like DPIG, encode images into heavily compressed features, which results in loss
of details and texture inconsistency between the generated output and the input.
They perform well in more constrained settings (clean backgrounds and simple
texture), while our task involves complex images in the wild; 2) these baseline
methods are more sensitive to the domain gap between training and testing data
since they directly synthesize image pixels. Our method performs foreground
inpainting in the coordinate space and then uses a composition module to refine
details and fill in background holes and thus is less sensitive to the domain gap
between imperfect synthesized selfies at training and perfect selfies at testing.
User study. For a useful real-world application, we believe qualitative percep-
tual evaluation is more important. Thus, we perform a user study on Amazon
Mechanical Turk (AMT). Similar to previous works [20,25], given the input
selfie and a pair of results generated by our approach and one of the baseline
approaches, users are asked to pick one that looks better than the other. Within
each Human Intelligence Task (HIT), we compare our method with the same
baseline method. We randomly generate 200 result pairs including 10 sanity
pairs where the answers are obvious. After filtering out careless users based on
their answers on the sanity pairs, we calculate the user study statistics using the
remaining 190 questions. We have three HITs for three baseline methods. Each
HIT is done by 20 users. As shown in Table. 1, our method is preferred over
others. We assume a null hypothesis that on average, half the users prefer ours
for a given paired comparison. We use a one-sample permutation t-test [13] to
measure p using 106 permutations and find p < 10−6 for the 3 baselines.
Quantitative evaluation. Since we do not have the ground truth neutral
portraits corresponding to input selfies, we cannot use metrics like SSIM. To
quantitatively compare our result quality with other baselines, we report Frechet
Inception Distance (FID) [18] and Kernel Inception Distance (KID) [5] as shown
in Table. 1. We aim to translate the body into a neutral pose while keeping
the rest of the image intact. Therefore, a good translation method should have

Model Human Prefers Ours FID↓ KID↓

DPIG [33] 0.798 88.27 0.026
VUNET [11] 0.851 135.90 0.077
PATN [65] 0.822 104.74 0.041
Ours N/A 71.93 0.014
Table 1: User study and, FID/KID scores.

Model FID↓ KID↓

Ours w/o LG2
P 82.09 0.019

Ours w/o Deform 73.87 0.017
Ours w/o Gated 72.89 0.014
Ours 71.93 0.014

Table 2: Ablation study.
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Input selfie
#120915150

dI dUV Ours

Fig. 8: Ablation study results for nearest pose search.

Input selfie
#133457041

w/o LG2
P w/o Deform w/o Gated Ours

Fig. 9: Ablation study for composition network.

low FID and KID values when compared to both the portraits and the selfie
domains. As suggested by [36], we combine both real selfie and real portrait
images into the real domain, and compute the FID and KID values between our
synthesized results (i.e. fake domain) and the real domain. The mean FID and
KID values are averaged over 10 different splits of size 50 randomly sampled
from each domain. The trend of FID and KID is consistent with the user study
result, and our method outperforms others significantly.

4.2 Ablation Study

Analysis of the pose search module. We compare three ablation settings: 1)
using body index distance only (i.e. dI); 2) using UV distance only (i.e. dUV );
3) using our two-step strategy. As shown in Fig. 8, the neutral poses retrieved by
dI have a reasonable body shape and size but the local coordinates mismatch
resulting in the cloth regions being distorted (see the elongated buttons). For
the neutral poses retrieved by dUV , the body shape and size are not compatible
with the head region. The retrieved body part is too small. Our two-step strategy
combines the benefits of dI and dUV and retrieves better poses.
Analysis of the compositing network. We compare three ablation settings.
w/o LG2

P : removing perception loss LG2

P . w/o Deform: removing deformable
skip-connection. w/o Gated: use normal conv layer instead of gated conv
layer [60]. As shown in Fig. 9, removing any of the components will result in
noticeable result degradation. Our full setting synthesizes more details in the
foreground, smoother transition between the foreground and the background and
also better fills the large background holes. The quantitative results reported in
Table. 2 are consistent with the above observations.
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#109067715 #121680430

Fig. 10: Failure cases. Left: input, result. Right: input, foreground mask, result.

Input selfie
#206713499

BG Ibg Inpainted BG Iibg Result with Ibg Result with Iibg

Fig. 11: Results of using inpaited background.

4.3 Limitations

Our approach has several limitations. First, as shown in Fig. 10 left, for challenging
non-frontal selfie poses/viewpoints, our nearest pose search module might struggle
with finding compatible neutral poses, which results in the synthesized result
containing arms or shoulders that are too slim or wide compared to the head
region. This problem happens less than 10% of the time in our top-1 result, and
users can usually find a good compatible pose from our top-5 results. Second, this
example also reveals the limitation of our background synthesis. We also show
one example obtained by inpainting the background with an extra off-the-shelf
model [61] in Fig. 11 to demonstrate the benefits from the image inpainting
model trained on large-scale datasets. Finally, our system is prone to errors in
DensePose detection. Fig. 10 right, DensePose failed to detect her left arm as
foreground. Therefore the composition module retained her left arm in the result.

5 Conclusion

In this work, we introduce a novel “unselfie” task that translates a selfie into a
portrait with a neutral pose. We collect an unpaired dataset and introduce a
way to synthesize paired training data for self-supervised learning. We design a
three-stage framework to first retrieve a target neutral pose to perform warping,
then inpaint the body texture, and finally fill in the background holes and seam-
lessly compose the foreground into the background. Qualitative and quantitative
evaluations demonstrate the superiority of our framework over other alternatives.
Acknowledgements: This work was partially funded by Adobe Research. We
thank He Zhang for helping mask estimation. Selfie photo owners: #139639837-
Baikal360, #224341474-Drobot Dean, #153081973-MaximBeykov, #67229337-
Oleg Shelomentsev, #194139222-Syda Productions, #212727509-Photocatcher,
#168103021-sosiukin, #162277318-rh2010, #225137362-BublikHaus, #120915150-
wollertz, #133457041-ilovemayorova, #109067715-Tupungato, #121680430-Mego-
studio, #206713499-Paolese – stock.adobe.com.



Unselfie 15

Unselfie: Translating Selfies to Neutral-pose
Portraits in the Wild – Supplementary material.

In this supplementary material, we provide additional results, more visual
comparisons with prior art and implementation details.

A Results of using off-the-shelf inpainting network for
background

In Fig. S1, we provide side-by-side result comparisons of our original pipeline
and a slightly modified pipeline using off-the-shelf inpainting network [61] to
fill the dis-occluded background holes before feeding the inpainted background
(Ibg in Figure 6 of the main paper) into our composition stage. In particular,
during inference, we use the pre-trained inpainting network to inpaint the holes
H = Hselfie (marked in black in second column of Fig. S1). Then we apply a
matting algorithm [56] to the retrieved neutral-pose portrait to create a new
hole H = Hneutral (third column of Fig. S1) before feeding it together with the
coordinate inpainting result (Ifg in Figure 6 of the main paper) as input to
our composition network. In Fig. S1, the fourth column shows the result of our
original pipeline and the fifth column shows the result of our modified pipeline
leveraging the inpainting network.

Theoretically, using a separate inpainting network to handle the background
separately allows us to harvest the latest advances in image inpainting and focus
our composition module exclusively on the synthesis of foreground details and
foreground-background transitions. However, there are pros and cons in practice.
Pros: the pretrained inpainting network can help reduce the artifacts in the
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Fig. S1: Results of using inpaited background.
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Fig. S1: Results of using inpaited background.
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background holes and near the foreground boundaries. For example, in the top
row of Fig. S1, the structure of the door on the right side of the image is better
synthesized. In the top and middle rows, the artifacts near the arms are also
reduced. Cons: occasionally the inpainting network could introduce small artifacts
near the foreground boundary. For example, in the bottom row, the inpainting
network introduced some grey regions on top of the girl’s right shoulder.

B More comparisons

In Fig. S2, we provide more comparisons between our approach and prior ap-
proaches, including VUNET [11]. Ours is the result from our original pipeline
where we manually picked the best one out of results using our top-5 retrieved
poses. Ours w/ inpainted BG uses off-the-shelf inpainting network as de-
scribed above. VUNET produces many artifacts in both body and background
regions.

Input selfie
#119222256

DPIG VUNET PATN Ours
Ours w/ in-
painted BG

#166011716

#96848570

#116496273

Fig. S2: Comparisons with state-of-the-art methods.

C Multi-modal results

As mentioned in the main paper, our nearest pose search module can generate
multiple output variations based on the same input selfie. Fig. S3 provides top5
results for every input selfie. Most of the top5 results have consistent quality
with each other. This gives users the freedom to choose the best pose they prefer.
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Input selfie
#101106916

Top-1 result Top-2 result Top-3 result Top-4 result Top-5 result

#120915150

#133457041

#135312945

#138378456

#182146016

#212727509

#218021773

#92379867

Fig. S3: Top-k results. 1st column: the input selfie image. 2-6th columns: the
top-k unselfie results.
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D Implementation details

Image alignment. As mentioned in the main paper, we align the image and pose
into the center part of a 256×256 resolution canvas. Likewise, the coordinate-map
and texture-map are also in 256×256 resolution. To align the image and pose,
we use two shoulder points whose locations are at (63,133) and (92,133) on the
256×256 coordinate-map. After obtaining the coordinates of the two shoulder
points from the coordinate-map, we calculate the scale and translation factors
for image and pose alignment by aligning the shoulder points to (112,128) and
(143,128) on the 256×256 image.
Hyper-parameters and miscellaneous details. For model optimization, we
use the Adam optimizer with β1 = 0.5, β2 = 0.999. G1 is trained with a minibatch
of size 10 for 70k iterations with initial learning rate of 0.0001. G2 is trained with
a minibatch of size 2 for 400k iterations with initial learning rate of 0.00002. The
loss weights are set to λ1 = 2, λ2 = 10, λ3 = λ4 = λ5 = 10, We use three types
of data augmentation during training: 1) left-right image flip; 2) background
replacement through foreground mask estimation [56]; 3) random paired selfie
selection among top-40 retrieved results. As to the output, we mask out the
generated pixels in the invalid region M which denotes the invalid region of the
image caused by the alignment step. Therefore, the final output can be formulated
as follows,

Iout = (IG2AG2 + Ibg(1−AG2))(1−M). (12)

The Image2UV (I2UV) mapping is implemented via a lookup table follows [1]
Improvement for DPIG [33] and VUNET [11] As mentioned in the main
paper, we made various improvements for DPIG [33] to produce comparable
results to ours, because the DPIG model does not converge during training
when directly applied to our task. One possible reason is that the background
and human appearance in our data contain a lot of variations which are very
hard to model in the latent space. For fairer comparison, we improve DPIG in
several ways, including adding Ibg as input to the decoder, adding perceptual
loss [63], using resnet-based PatchGAN discriminator with LSGAN loss [65]. We
also improve VUNET by adding Ibg as input to U-net encoder and adding L1

loss to stabilize training. We also tried adding adversarial loss but observe little
improvement.
Network architectures. As to our inpainting network architecture, we use the
same network as that of [15], except that our input contains 5 channels including
Csrc (2 channels) and Tsrc (3 channels). Our composition network consists of
source encoder branch, target encoder branch, and decoder as shown in Tab. S1.
The notations src_blkN,N = 1, ..., 3, tgt_blkN,N = 1, ..., 3, res_blkN,N =
1, ..., 6 corresponds to a block with gated convolution layer proposed in [60]
followed by group normalization [55] (group number = 32) and Leaky ReLU
(slope = 0.01).
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Table S1: The composition network architecture.

Layer Filters/Stride
(Dilation) Input Input Size Output Size

Source encoder branch

src_blk1 5 x 5 / 1 (1) [Psrc, Ifg] 6 x H x W 256 x H x W

src_blk2 3 x 3 / 1 (1) src_blk1 256 x H x W 256 x H x W

src_blk3 3 x 3 / 1 (2) src_blk2 256 x H x W 256 x H x W

Target encoder branch

tgt_blk1 5 x 5 / 1 (1) [Ptgt, Ibg, IG1, M] 10 x H x W 256 x H x W

tgt_blk2 3 x 3 / 2 (1) tgt_blk1 256 x H x W 256 x H
2

x W
2

tgt_blk3 3 x 3 / 1 (1) tgt_blk2 256 x H
2

x W
2

256 x H
4

x W
4

res_blk1 3 x 3 / 1 (1) tgt_blk3 256 x H
4

x W
4

256 x H
4

x W
4

res_blk2 3 x 3 / 1 (1) [res_blk1 + tgt_blk3] 256 x H
4

x W
4

256 x H
4

x W
4

res_blk3 3 x 3 / 1 (1) [res_blk1 + res_blk2] 256 x H
4

x W
4

256 x H
4

x W
4

res_blk4 3 x 3 / 1 (1) [res_blk2 + res_blk3] 256 x H
4

x W
4

256 x H
4

x W
4

res_blk5 3 x 3 / 1 (1) [res_blk3 + res_blk4] 256 x H
4

x W
4

256 x H
4

x W
4

res_blk6 3 x 3 / 1 (1) [res_blk4 + res_blk5] 256 x H
4

x W
4

256 x H
4

x W
4

Decoder

dec_blk1 3 x 3 / 1 (1)
[res_blk5 + res_blk6,
warp(src_blk3,E),
tgt_blk3]

768 x H
4

x W
4

256 x H
4

x W
4

upsample1 — dec_blk1 256 x H
4

x W
4

256 x H
2

x W
2

dec_blk2 3 x 3 / 1 (1)
[upsample1,
warp(src_blk2,E),
tgt_blk2]

768 x H
2

x W
2

256 x H
2

x W
2

upsample2 — dec_blk2 256 x H
2

x W
2

256 x H x W

dec_blk3 3 x 3 / 1 (1)
[upsample2,
warp(src_blk1,E),
tgt_blk1]

768 x H x W 256 x H x W

dec_blk4 3 x 3 / 1 (1) dec_blk3 256 x H x W 6 x H x W

tanh — dec_blk4 6 x H x W 6 x H x W
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E Attribution:

Selfie photo owners: #206713499-Paolese, #138378456-iiievgeniy, #225137362-
BublikHaus, #119222256-rh2010, #166011716-luengo_ua, #96848570-vitaliymateha,
#116496273-travnikovstudio, #101106916-lkoimages, #120915150-wollertz, #133457041-
ilovemayorova, #135312945-luengo_ua, #182146016-EVERST, #212727509-
Photocatcher, #218021773-deagreez, #92379867-Rido – stock.adobe.com.
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