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FoV-Net: Field-of-View Extrapolation Using Self-Attention and
Uncertainty

Liqian Ma1 Stamatios Georgoulis2 Xu Jia3 Luc Van Gool1,2

Fig. 1: Given the present and past frames with narrow FoV, we hallucinate the present frame with wide FoV (left: hallucination,
middle: ground truth) and predict the associated uncertainty (right). The past frames are omitted for brevity.

Abstract—The ability to make educated predictions about their
surroundings, and associate them with certain confidence, is
important for intelligent systems, like autonomous vehicles and
robots. It allows them to plan early and decide accordingly.
Motivated by this observation, in this paper we utilize infor-
mation from a video sequence with a narrow field-of-view to
infer the scene at a wider field-of-view. To this end, we propose
a temporally consistent field-of-view extrapolation framework,
namely FoV-Net, that: (1) leverages 3D information to propagate
the observed scene parts from past frames; (2) aggregates the
propagated multi-frame information using an attention-based
feature aggregation module and a gated self-attention module,
simultaneously hallucinating any unobserved scene parts; and (3)
assigns an interpretable uncertainty value at each pixel. Extensive
experiments show that FoV-Net does not only extrapolate the
temporally consistent wide field-of-view scene better than existing
alternatives, but also provides the associated uncertainty which
may benefit critical decision-making downstream applications.
Project page is at http://charliememory.github.io/RAL21_FoV.

Index Terms—Computer Vision for Automation, Deep Learn-
ing for Visual Perception, Visual Learning

I. INTRODUCTION

IN our pursuit of intelligent machine perception, it is
crucial to endow systems, like autonomous vehicles and

robots, with an awareness of the scene content beyond their
immediately visible field-of-view (FoV). Simply put, the system
should be able to hallucinate its surroundings, and associate
each prediction with certain confidence, which could help
it plan early and decide accordingly. For example, when a
moving camera is turning right at a corner in a road-bound
scene, the right blind part is completely unobserved but can
be reasonably hallucinated. Or when observing a car in a
neighboring lane over time, wide FoV synthesis can help to
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reason about its future position, also beyond its immediately
visible FoV. Such wide FoV hallucination ability can benefit
vision-based navigation [58], exploration [28], and augmented-
reality telerobotics system [40]. To realize this idea, we
can draw inspiration from how humans use vision to relate
themselves to the world around them. Humans clearly have a
situational awareness that goes beyond their narrow FoV. On
the one hand, this is grounded in a capability to propagate
local scene content from past observations (e.g., anticipate
the future position of a previously observed building based on
the car’s trajectory when driving). On the other hand, it is due
to an ability to hallucinate global scene content for unobserved
regions based on the scene’s context (e.g., the unobserved side
views in a driving scene are likely to contain trees if the car
crosses a forest area). Most importantly, humans can typically
assign a degree of confidence in these judgments to quantify
their intuition.

Motivated by these observations, in this paper, we tackle
the problem of FoV extrapolation. The goal is to leverage
information from a video sequence with narrow FoV (including
the present and few past frames) in order to infer the (present)
scene at a wider FoV (see Fig. 1). There are several challenges
associated with this problem. (1) A large image size discrepancy
between the input narrow FoV frames and the output wide
FoV frame has to be bridged, and the results should be
temporally consistent. (2) Some areas in the wide FoV frame
may change significantly or even not appear in any of the
past narrow FoV frames. For example, far away objects in
the past narrow FoV frames need upscaling or novel view
synthesis, and some occluded or unobserved regions need to
be inpainted. Thus, lots of details need to be hallucinated
in the wide FoV frame. (3) There is ambiguity existing
between the narrow FoV observations and the wide FoV ground
truth. The ambiguity mainly comes from two sources: the
unobserved information and possible 3D estimation errors. In
particular, the pixels in the wide FoV frame can be roughly
divided into four types (see Fig. 2): (a) the observed narrow
FoV pixels in the present frame (no ambiguity); (b) the
propagated pixels from past frames with accurate propagation
(low ambiguity); (c) the propagated pixels from past frames
with noisy propagation (medium ambiguity); (d) the unobserved
regions (high ambiguity). When the ambiguity is high, strong
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Fig. 2: Ambiguity illustration. Best viewed in the digital form.

enforcement of pixel reconstruction may mislead the training
process. In contrast, perceptual and adversarial losses can be
more suitable to predict a plausible outcome.

To address these challenges, we propose a temporally
consistent FoV extrapolation framework called FoV-Net, which
consists of two stages (see Fig. 3). A coordinates generation
stage propagates past narrow FoV frames into the present wide
FoV frame by leveraging 3D scene information (addressing
challenge 1). A frame aggregation stage combines the multi-
frame propagated information, simultaneously hallucinating
fine details and unobserved scene parts (addressing challenges
2&3). Specifically, in the frame aggregation stage, we introduce
an Attention-based Feature Aggregation (AFA) module to
better fuse the propagated multi-frame information on the
feature level, and a Gated Self-Attention (GSA) module to
handle the discussed ambiguities and improve the generation
quality (addressing challenges 2&3). Finally, we introduce an
uncertainty mechanism to interpret the hallucination uncertainty
at each pixel and guide the learning by reducing supervision
ambiguity (addressing challenge 3). Such hallucination un-
certainty is rarely discussed in the image synthesis field, but
is quite important for practical downstream decision-making
applications. Fig. 1 gives an example of our FoV extrapolation
with its associated uncertainty.

II. RELATED WORK

Video-based image synthesis. This problem exists in various
forms in the literature, including video inpainting, video
extrapolation, novel view synthesis, future video prediction,
video-to-video synthesis, etc. Video inpainting [24, 55, 32, 4,
5, 15] aims to hallucinate the missing pixels through warping
or generate the missing pixels conditioned on the neighboring
(in spatial or temporal dimensions) visible pixels. The typical
setting is to utilize the past, present, and future frames to inpaint
the missing pixels in the present frame, all within narrow FoV.
Video extrapolation [34, 9, 64, 19] usually adopts 2D or 3D
geometry-based image warping and stitching techniques to
blend the observed pixels of adjacent narrow FoV frames in
order to extend the FoV, but totally ignores any unobserved
pixels and object view changes. Novel view synthesis [43,
52, 21, 8, 7, 14] aims to generate images of a given object or
scene from different viewpoints by blending the observed pixels,
as well as hallucinating a few missing pixels mainly for dis-
occlusion. When applied to scenes, it is heavily reliant on highly
accurate multi-view geometry to produce good results. Future

video prediction [11, 3, 36, 38, 16, 35] focuses on hallucinating
future frames conditioned on the past and present frames,
all within narrow FoV. Undoubtedly, this task entails higher
uncertainty in the predictions. Video-to-video synthesis [56, 6,
48, 1] mainly transfers the appearance while preserving the
structure of the input (e.g., semantic maps). Thus the input
and output are usually well aligned and within narrow FoV.
Unlike the existing forms, our goal is to infer the present scene
at a wider FoV, including the observed and unobserved pixels,
conditioned on the past and present narrow FoV observations.
Note that, when the camera is moving forward, most out-of-
view regions of the present narrow FoV frame are actually
future predictions as far as observations in the past frames are
concerned. While if the camera is turning around at a corner,
part out-of-view regions may be totally unobserved before,
which makes the problem more challenging. The object size
and view may change significantly, leading to large unobserved
regions. To the best of our knowledge, none of the existing
video-based image synthesis forms fully covers the needs of
our intricate problem.
Attention. The success of self-attention models in natural
language processing has inspired various applications in the
computer vision field, such as in image recognition [23, 67],
image synthesis [65, 2, 44], video prediction [29, 57], and
imitation learning [46]. Self-attention can be formulated as
locally adaptable convolutional layers with different weights for
different types of image regions [67]. In our FoV extrapolation
problem, we observe that such local adaptability is essential
in terms of hallucination quality, since different image regions
have different characteristics (see Fig. 2). To improve the
hallucination quality, we propose a novel gated self-attention
module, motivated by the success of gated convolution in
image inpainting [62] and that of self-attention in image
recognition [67]. Note that, the gated self-attention concept
is not new and has been introduced in natural language
processing [12, 53, 68, 33]. However, in this work, we
extend it to the video domain. Additionally, in order to better
aggregate the propagated multi-frame information, we propose
an Attention-based Feature Aggregation (AFA) module – which
is not to be confused with self-attention used above – that makes
our framework more robust to propagation errors and improves
the generation quality (see Sec. III-B).
Uncertainty estimation. Reasoning about the uncertainty of
neural network prediction is essential for practical decision-
making applications [37]. Although uncertainty estimation has
been proved to be effective for several computer vision tasks,
including object detection [20], semantic segmentation [31,
25], depth estimation [45, 61] and optical flow [26], it remains
largely unexplored in the image synthesis literature. In this
paper, we propose a hallucination uncertainty estimation mech-
anism, which not only enables the prediction of uncertainty,
but also guides the learning by reducing supervision ambiguity.
In general, there are different ways to estimate the uncertainty,
including empirical estimation, predictive estimation, and
Bayesian estimation (see [45, 37] for a comprehensive survey).
Among them, the predictive estimation is desirable due to its
effectiveness and efficiency, and has been explored in several
computer vision tasks [45, 26, 31]. As a positive side effect,
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Fig. 3: The proposed FoV-Net framework. Left: the coordinate generation stage (Sec. III-A), which estimates the scene-level
rigid flow, governed by the camera motion, and uses it to calculate the coordinates (i.e., pixel displacements). Right: the frame
aggregation stage (Sec. III-A), which utilizes the generated coordinates to propagate past frames information on a multi-scale
feature level – denoted as red dots – and then aggregates the propagated features with an Attention-based Feature Aggregation
module (Sec. III-B). To synthesize the final result Ot, a U-Net architecture is adopted to in/out-paint the missing regions,
where a Gated Self-Attention module (Sec. III-B) is introduced to handle different ambiguities for better generation quality.
Concurrently, an uncertainty map Ut is jointly estimated to interpret the hallucination uncertainty at each pixel and guide the
learning by reducing supervision ambiguity (Sec. III-C). For It, we use the identical coordinates as et, namely, the features
are not changed after warping. The coordinate ei is also used in the GSA blocks to warp the past hidden states, but we omit
the arrows here. The discriminator networks for adversarial losses are also omitted for clarity. Due to FoV-Net’s recurrent
nature, note that previous outputs {Ot−i}i=1,...,j and {Ut−i}i=1,...,j become future inputs {It−i}i=1,...,j for temporal coherency
purposes. Best viewed in the digital form.

when integrated with the training objective in our problem, the
predictive uncertainty can naturally weight the loss functions
spatially to reduce the supervision ambiguity.

III. FOV-NET FRAMEWORK

A. System overview

Given a present narrow FoV frame It and k past narrow FoV
frames {It−i}i=1,...,k (k = 5 in our experiment), our goal is to
synthesize the present wide FoV frame Ot – close to ground
truth Wt – and predict the hallucination uncertainty Ut. In
addition, the adjacent synthesized results Ot−1 and Ot should
be temporally consistent. To achieve these, we propose a two-
stage recurrent framework (Fig. 3) consisting of a coordinate
generation stage and a frame aggregation stage, coupled
with a hallucination uncertainty mechanism (Sec. III-C). The
coordinate generation stage is designed to estimate the scene-
level rigid flow, governed by the camera motion, and use it to
generate coordinates (i.e., pixel positions) in order to spatially
propagate information from the past narrow FoV frames. The
frame aggregation stage is designed to aggregate the past
narrow FoV frames It−k, . . . , It−1 and present narrow FoV
frame It into one wide FoV image, as well as hallucinate the
unobserved missing regions. To enforce temporal coherency,
we use a simple recurrent feed-forward strategy: replace the
narrow FoV inputs {It−i}i=1,...,j with the previous outputs

{Ot−i}i=1,...,j , and feed the corresponding previous uncertainty
{Ut−i}i=1,...,j by channel-wise concatenation (j = 2 in our
settings). We analyze each stage of our framework below.
Coordinate generation stage, that builds upon Mon-
odepth2 [18], consists of a depth network DθD and a relative
camera pose network PθP 1. During training, P takes a pair
of two temporally adjacent frames as input and outputs the
relative camera pose, and D takes one frame of the pair as
input and outputs its depth. During inference, however, we
do not have access to the wide FoV frame which is required
by the inverse warping operation [27] in order to propagate
the pixels between two frames. To address this, we design a
forward warping strategy to propagate the past narrow FoV
frames to the present wide FoV frame. We first utilize the
depth maps from the past narrow FoV frames to calculate the
rigid flow frigt→i(êt→i) from the present frame It to the past
frame Ii, using Eq. 1.

frigt→i(êt→i) = KTi→tDi(ci)K−1
ci − ci, (1)

where K denotes the camera intrinsic matrix, Ti→t denotes the
relative camera pose, and ci denotes homogeneous coordinates
of pixels in frame Ii. Then, using the calculated flow, we
compute the spatial mapping, i.e., coordinate map êt→i, that

1The subscripts {θD, θP , θA, θQ, θT } are network parameters. We regu-
larly omit the subscripts for brevity.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2021

spatially matches the pixel positions of present frame It to
the corresponding ones of past frame Ii. Finally, we reverse
this correspondence, i.e., ei = reverse(êt→i), which now
corresponds to the spatial positions from the past frame Ii to
the present frame It. This coordinate map ei will be used to
propagate features in the frame aggregation stage using bilinear
sampling.
Frame aggregation stage is designed to aggregate the past
narrow FoV frames It−k, . . . , It−1 and present narrow FoV
frame It as well as previous wide FoV results {Ot−i}i=1,...,j ,
{Ut−i}i=1,...,j , into one wide FoV image, simultaneously hal-
lucinating unobserved missing regions. It contains aggregation
network AθA , image discriminator network QθQ , and temporal
discriminator network TθT . The aggregation network A first
extracts a residual multi-scale feature pyramid (with N = 3
levels) from each frame using an encoder with shared weights,
and propagates the multi-scale features using the computed
coordinates ei. Then, an Attention-based Feature Aggregation
(AFA) module (Sec. III-B) aggregates the propagated features.
To synthesize the final result based on the aggregated features,
a U-Net decoder is designed, where we introduce the Gated
Self-Attention (GSA) module (Sec. III-B) to adaptively handle
ambiguities and improve the generation quality.

B. Self-attention mechanism

Attention-based Feature Aggregation (AFA). In Fig. 4,
to aggregate the propagated features, each set of prop-
agated multi-scale features maps (Fig. 3 right) are fed
into a convolution layer followed by softmax normaliza-
tion to predict frame-wise spatial attention maps (i.e., one

Attention based feature aggregation

Conv

···Conv

Attention based feature aggregation

Warped features
Aggregated features

Attention maps

[ Ut-1 ; Ot-1 ] U
t-p

U
t-p U
t-p

Fig. 4: AFA module. Same color
coding as Fig. 3

channel attention map for
each frame). Then, the prop-
agated feature maps are
multiplied by the attention
maps and summed across
all frames. This attention-
based aggregation module
can learn to select the use-
ful features among these
frames to address the issues
caused by depth/pose errors
and frame inconsistency.
Gated Self-Attention

(GSA). To make our model adaptable to observations with
different ambiguity levels, we encompass self-attention and
gating mechanisms to construct a Gated Self-Attention (GSA)
module. Here, we adopt a patch-wise self-attention block
introduced in [67], which efficiently computes local attention
weights that vary over spatial coordinates and channels instead
of sharing weights to convolve the whole feature maps like
conventional CNN. It has the form:

yi =
∑

j∈R(i)

α(xR(i))j � β(xj), (2)

where α(xR(i)) = γ(δ(xR(i)))).

The function β produces the feature vectors β(xj) that are
weighted summarized by the adaptive weight vectors α(xR(i))j .

The tensor xR(i) is the patch of feature vectors in a 7×7
footprint R(i). α(xR(i))j is the attention vector at location j
in tensor α(xR(i)), corresponding spatially to the vector xj
in xR(i). Functions β and γ are mappings implemented via
one convolution layer, respectively. The function δ combines
the feature vectors xj from the patch xR(i) implemented via a
concatenation operation δ(xR(i))) = [φ(xi), [ψ(xj)]∀j∈R(i)],
where φ and ψ are mappings implemented via one convolution
layer, respectively. � denotes the Hadamard product. To reduce
the impact of vanishing gradients, we wrap the self-attention
block in a residual structure, i.e., z = Convr(y) + x. We
then equip our self-attention block with a gating mechanism to
learn to control the information flows of different ambiguities,
formulated as:

g = sigmoid(Convg(z))� tanh(Conva(z)), (3)

where sigmoid(Convg(z)) and tanh(Conva(z) denote the gate
and feature activation, respectively. Convr, Convg , Conva are
2D convolution layers, and the subscriptions stand for residual,
gate, and attention, respectively.

C. Uncertainty mechanism

We design an uncertainty mechanism to not only predict
the interpretable hallucination uncertainty, but also guide
the learning by reducing supervision ambiguity. We draw
inspiration from prior work where predicting the data-dependent
uncertainty helped in tempering the training objective, e.g.,
by attenuating the effect from erroneous labels in [26], or
by automatically balancing the loss weighting in [31]. To
realize this idea, one may design a heuristic weighting map,
like the spatially discounted reconstruction loss [63], but such
approaches are ad-hoc and cannot adapt to different scenes au-
tomatically. Instead, we opt to jointly learn an uncertainty map
during training, which serves as a probabilistic interpretation of
our model. We build upon predictive estimation [42], and infer
the mean and variance of the distribution p(Ot|It−i,D), where
i = 0, . . . ,K, and D denotes the whole dataset. The network
is trained by log-likelihood maximization (i.e., negative log-
likelihood minimization) and the distribution can be modelled
as Laplacian (i.e., corresponding to L1 loss) or Gaussian
(i.e., corresponding to L2 loss) respectively. The negative
log-likelihood formulation is:

L1Log =
‖µ(x)− x∗‖1

σ(x)
+ log σ(x), (4)

where µ(x) and σ(x) are the network outputs, encoding mean
and variance of the distribution. Here, we adopt L1 loss for
pixel level reconstruction and reformulate Eq. 4 integrating
uncertainty Ut as:

LθA1U = E
[(
‖Ot −Wt‖1

Ut

)
�M

+‖Ot −Wt‖1 � (1−M) + Ut

]
,

(5)

where Ot, Wt are the predicted wide FoV RGB image and
the ground truth RGB image (3-channel), respectively. Ut
is the estimated hallucination uncertainty map (1-channel).
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M denotes the mask for out-of-narrow-FoV regions. Within
the narrow FoV region (1 − M), the L1 is not weighted
by uncertainty Ut, as newthe present narrow FoV region
has been observed. Note that, to make the uncertainty term
Ut more interpretable and stabilize the training process, we
constrain Ut in the range (0,1) with a sigmoid function and
modify the regularization term from logUt to Ut for gradient
stabilization. We found that such modification also leads to
better performance. Additionally, in our recurrent framework,
the previous predicted uncertainty {Ut−i}i=1,...,j are also used
in future input to act as a confidence signal.

D. Losses

Coordinate generation losses. Following [18], the objective
in this stage is a masked photometric loss ν � Lphoto and an
edge-aware smoothness loss Lsmooth, summarized below:

LθD,θPCG = ν � LθD,θPphoto + λsL
θD,θP
smooth, (6)

LθD,θPphoto = min
t′
pe(It, It′→t), (7)

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α)‖Ia − Ib‖1,

LθD,θPsmooth = |∇xd∗t |e−|∇xIt| + |∇yd∗t |e−|∇yIt|, (8)

where ν = [min
t′
pe(It, It′→t)] acts as an auto-mask for

suppressing the effect of objects moving at similar speeds to the
camera, and [] is the Iverson bracket. d∗ = dt/dt is the mean-
normalized inverse depth. SSIM is the structural similarity [59].
We use hyper-parameters α = 0.85 and λs = 0.001 as in [18].
Frame aggregation losses. The objective of the frame aggre-
gation stage has four loss terms: uncertainty-aware L1 recon-
struction loss LθA1U , perceptual reconstruction loss LθAperc [66],
adversarial loss LθA,θQadv [41], and temporal adversarial loss
LθA,θTadvT . The reconstruction losses LθA1U and LθAperc are used to
regress the output towards the target ground truth, while the
adversarial losses LθA,θQadv and LθA,θTadvT are used to encourage
image photo-realism and temporal coherence. The formulations
are as follows:

LθA,θQ,θTFA = λ1L
θA
1U (Ot,Wt) + λ2L

θA
perc(Ot,Wt)

+ LθA,θQadv (Ot,Wt) + LθA,θTadvT (Ot,Wt),
(9)

LθAperc = E
[
‖φ(Ot)− φ(Wt)‖22 � (1 +M))

]
, (10)

LθA,θQadv = E
[
(Q(Wt,M))2 � (1 +M)

]
+ E

[
(Q(Ot,M)− 1)2 � (1 +M)

]
,

(11)

LθA,θTadvT = E
[
(T ({Wt−i}i=0,...,j ,M))2 � (1 +M)

]
+ E

[
(T ({Ot−i}i=0,...,j ,M)− 1)2 � (1 +M)

]
,

(12)

where λ1 = 3, λ2 = 10. φ is a VGG network [50].

IV. EXPERIMENTS

To evaluate FoV-Net w.r.t. its FoV extrapolation capabilities,
we provide both qualitative and quantitative results. For more
video results and training/implementation details, please visit
the supplementary materials.
Dataset. Our method is evaluated on two widely used datasets:
raw KITTI sequences [17] using the split from Eigen et al. [13],

and Cityscapes sequences [10]. To reduce the redundant
information in videos, we downsample the frame rate to 1/2
and 1/3 for KITTI and Cityscapes sequences. Therefore, we
have 39350/4382 and 59526/14992 train/val frames on KITTI
and Cityscapes, respectively. During testing, we prepare each
video sample with 10 and 5 target frames for KITTI and
Cityscapes. Totally, there are 635 (6350 frames) and 1525
test video samples (7625 frames) in KITTI and Cityscapes,
respectively. We use both monocular left and right camera
sequences for training and validation, but only use left camera
data for testing. In each forward pass, we use 6 successive
frames (k = 5 past + 1 present) as input. The narrow FoV
ratio is set to 0.5 in our experiments, i.e., all 6 frames are
cropped 25% on both left and right sides to mimic the narrow
FoV.
Metrics. For quantitative evaluation, four image quality metrics
are used: Structural Similarity (SSIM) [59], Learned Percep-
tual Image Patch Similarity (LPIPS) [66], Fréchet Inception
Distance (FID) [22], and Fréchet Video Distance (FVD) [54].
SSIM and LPIPS are used to evaluate the similarity between the
result and the ground truth. FID and FVD are used for realistic
appearance evaluation on the image level and video level,
respectively. Thus, FVD can reflect both appearance realism
and temporal coherence of the results. For SSIM, higher scores
are better. For LPIPS, FID, and FVD, lower scores are better.
We use VGG [50] pre-trained on ImageNet as the feature
extractor of LPIPS. To evaluate how significant the modeled
hallucination uncertainties are, we use sparsification plots and
Area Under the Sparsification Error (AUSE, the lower, the
better) which quantify how close the estimate is to the oracle
uncertainty, as in [45]. More details are given in “Uncertainty
results”.

A. Comparisons

Baselines. As no prior work is directly comparable to our
setting, we compare against geometric method Mono [18],
flow-based video prediction method VoxelFlow [36], and video
completion method LGTSM [5], the closest alternatives. We
also evaluate the Mono+LGTSM (Mono-LGTSM) setting,
where pixels of past frames are first propagated by Mono
before fed into LGTSM.
Hallucination Results. Qualitative comparisons with other
alternatives are provided in Fig. 5. We observe that our method
can synthesize more realistic and perceptually appealing results.
For example, our method can produce hallucinations with
less distortion in the 2nd column result, and better preserve
the object appearance with less artifacts in the 3rd and 4th
column results. This trend is also reflected from the quantitative
measurements (SSIM, LPIPS, and FID scores) in Tab. I. Our
method generates sharper and more photo-realistic results
than VF [36] and LGTSM [5], but the latter have a higher
SSIM, probably due to blur, something also argued in [30, 49,
39]. While LPIPS is generally more consistent with human
perception and has been wildly adopted in recent image
synthesis works [47, 5] Furthermore, our method alleviates
the flickering via the simple recurrent strategy which can retain
temporal consistency. Note that, the hallucination of unobserved
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Fig. 5: The qualitative comparisons on KITTI (column 1-2) and Cityscapes (column 3-4). The video version is included in our
supplementary PDF.

TABLE I: The quantitative results on KITTI and Cityscapes.

KITTI Cityscapes

Model SSIM↑ LPIPS↓ FID↓ FVD↓ SSIM↑ LPIPS↓ FID↓ FVD↓

Mono [18] 0.6803 0.2975 31.14 269.0 0.6444 0.3375 44.90 552.8
VF [36] 0.7184 0.3049 33.51 360.8 0.7844 0.2936 38.78 491.5
LGTSM [5] 0.7369 0.2905 52.57 495.7 0.7959 0.2845 72.86 572.9
Mono-LGTSM 0.7028 0.2798 18.95 201.6 0.7752 0.2866 51.18 457.8

Ours 0.7162 0.2294 10.94 82.71 0.7539 0.2220 9.27 203.4

TABLE II: Ablation study results on KITTI.

Model SSIM↑ LPIPS↓ FID↓ FVD↓

Base 0.7020 0.2407 12.26 99.75
w/o AFA 0.7016 0.2377 11.25 91.92
w/o GSA 0.7160 0.2386 11.94 98.67
w/o U 0.7200 0.2312 11.37 89.70

w/o 3D 0.6830 0.2618 16.71 171.1
w/o Recur 0.7145 0.2331 11.11 109.5

Ours 0.7162 0.2294 10.94 82.71

regions is improved as more surrounding observations become
available in later frames. The FVD score is also consistent with
such observations. In addition to blur and distortion, Mono [18]
and VF [36] suffer from missing pixels. LGTSM [5] cannot
propagate the information to the out-of-view regions correctly
and thus performs poorly. When using Mono and LGTSM
together, we can combine their merits and arrive at better
results. This indicates that both 3D cues and hallucination
capability are key to the FoV extrapolation problem. FoV-Net
gets the best of both worlds, and further addresses ambiguity,
leading to the best outcome.
Uncertainty results. To evaluate the significance of estimated
uncertainty, we adopt a pixel-wise metric Mean-Square-Error
(MSE) to sort all pixels in each hallucinated wide FoV image in
order of descending uncertainty. Then, we iteratively remove
a subset of pixels in the out-of-view regions (i.e., 5% in
our experiments) and compute MSE on the remaining to
plot a curve that is supposed to shrink if the uncertainty
properly encodes the hallucinated image’s errors (see Fig. 7).
An ideal sparsification (oracle) is obtained by sorting pixels
in descending order of the MSE magnitude. In contrast, a
random uncertainty is to remove the pixels randomly each time.

Besides, we observe that there is usually high uncertainty in
the edge part. Therefore, we also construct an edge uncertainty
baseline which adopts an estimated soft edge map [60] to
approximate the hallucination uncertainty. As we use 0.5 as
our narrow view ratio, the curves decrease to zero when 50%
of pixels are extracted. The AUSE scores on KITTI are 0.0049,
0.0105, 0.0149, and 0.0197 for oracle, uncertainty, edge, and
random settings, respectively. The AUSE scores on Cityscapes
are 0.0021, 0.0042, 0.0070, and 0.0080 for oracle, uncertainty,
edge, and random settings, respectively. As shown in Fig. 7, our
method can successfully estimate the hallucination uncertainty
which reasonably indicates the prediction errors. For example,
in the 2nd column result of Fig. 5, the uncertainty is high on
the thin pole and car edges, as the depth estimation is noisy
there. In the 4th column result of Fig. 5, the uncertainty is
high on the car edges and unobserved regions (black holes in
the Mono result).
Ablation study is performed on KITTI for each component of
FoV-Net. The ablative settings are as follows. Base: removing
the AFA module, GSA module, and the uncertainty mechanism.
w/o AFA: using temporal average pooling to replace the
AFA module. w/o GSA: removing the GSA modules. w/o
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Fig. 7: The sparsification plots. The x-axis denotes the fraction
of removed pixels, and the y-axis shows the MSE on the
remaining pixels. MSE converges to 0 after removing all pixels
in the out-of-view regions. Zoom in for more details.

U: removing the uncertainty mechanism. w/o 3D: removing
the coordinate generation stage and the feature propagation
operation in the frame aggregation network. w/o Recur:
removing temporal modeling, i.e., no recurrent feed-forward
and temporal discriminator T . The quantitative results are in
Tab. II. When equipped with our AFA and GSA modules,
the results are perceptually closer to the wide FoV targets
(in terms of LPIPS score decreasing), as well as more photo-
realistic (in terms of FID/FVD scores decreasing) and temporal
consistency (in terms of FVD score decreasing). Besides,
our interpretable uncertainty mechanism could improve the
performance moderately, indicating its ability to guide the
learning by reducing supervision ambiguity. In addition, the
3D cues and temporal modeling are also important to good
performance.

B. Extended Applications

In this section, we provide several extensions (also see
supplementary material). We further apply our method to depth
extrapolation (Fig. 6 left) and semantic extrapolation (Fig. 6
middle). Results show that our method can benefit other vision
perception tasks as well, which are important for robotic motion
planning and navigation.
Depth extrapolation. To extrapolate the wide FoV depth,
the input will be the narrow FoV depth maps. Our frame
aggregation network is then trained with the scale-invariant
depth regression loss [13]. Both the input and target depth
maps are estimated by our depth network D.
Semantic segmentation extrapolation. To infer the wide
FoV semantic segmentation, the input is the narrow FoV
segmentation maps, and our frame aggregation network is

then trained with a cross-entropy loss. Both the input and
target segmentation maps are estimated by HRNet [51].

V. LIMITATIONS AND CONCLUSIONS

While FoV-Net has achieved good results, there remain a
plethora of avenues for future work. First, our FoV-Net may
be not robust to fast moving objects. For example, in Fig. 6
right, the blurred left region is due to the white moving car
which causes serious propagation errors. One potential solution
is to extend the FoV extrapolation in the 3D space with a
multi-sensor system and model these moving objects explicitly.
Second, in this work, we focus on extrapolating the present
frame to a limited wide view. While 360◦FoV extrapolation and
future prediction could be more helpful in some cases. We plan
to extend our method both spatially and temporally to enable
360◦FoV future prediction. In conclusion, we present FoV-
Net to tackle the FoV extrapolation problem. Our framework
propagates and aggregates the information observed from the
past and current narrow FoV frames to generate the current
wide FoV, as well as predicts the hallucination uncertainty. We
take a significant step to endow machines with hallucination
ability, and we believe such an ability can benefit the robotics
community.
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